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ABSTRACT: The fusion of MXene-based materials with microfluidics not only
presents a dynamic and promising avenue for innovation but also opens up new
possibilities across various scientific and technological domains. This Perspective delves
into the intricate synergy between MXenes and microfluidics, underscoring their
collective potential in material science, sensing, energy storage, and biomedical
research. This intersection of disciplines anticipates future advancements in MXene
synthesis and functionalization as well as progress in advanced sensing technologies,
energy storage solutions, environmental applications, and biomedical breakthroughs.
Crucially, the manufacturing and commercialization of MXene-based microfluidic
devices, coupled with interdisciplinary collaborations, stand as pivotal considerations.
Envisioning a future where MXenes and microfluidics collaboratively shape our
technological landscape, addressing intricate challenges and propelling innovation
forward necessitates a thoughtful approach. This viewpoint provides a comprehensive
assessment of the current state of the field while outlining future prospects for the
integration of MXene-based entities and microfluidics.
KEYWORDS: MXene, microfluidics, biomedical engineering, sensor, wearables

1. INTRODUCTION
Microfluidics entails the manipulation of fluids within
extremely small channels, typically on a micrometer scale.1

Over the past three decades, the promise of “lab-on-a-chip”
microfluidic technologies has become increasingly evident.2−5

This technology capitalizes on advantages like minimal
consumption of samples and reagents, quick analysis facilitated
by limited diffusion distances, coupled with the capacity to
execute numerous analytical procedures within a compact
device, resulting in efficient sample-to-answer processes.6

Microfluidics serves as the foundational technology behind
the creation of various point-of-care devices, which have played
a pivotal role in advancing 3recisionn healthcare.7,8 Currently,
the focus is on developing systems that are straightforward to
operate and manufacture and are readily accessible to end-
users. An alternative approach to complex all-in-one micro-
electromechanical systems (MEMS) entails the integration of
uncomplicated microfluidic flow cells with an independent
sensor unit. This strategy is favored due to potential
manufacturing complexities associated with integrated MEMS
devices.9,10 In the realm of microfluidic electroanalytical
sensors, a common practice involves microfluidic flow-cell
technology construction based on either custom-developed or
commercially available connecting electrodes. The advantage
lies in the ability to replace the electrode, as surfaces can
become fouled after repeated usage. Another popular micro-
fluidic setup is the microfluidic paper-based analytical device

(μPAD) that operates on capillary action, thus eliminating the
need for pumps. Techniques such as screen printing, laser
printing, and wax printing, are commonly employed techniques
for crafting paper-based microfluidic devices11−13 which are
lightweight, easily manufacturable, and designed for single-use
purposes. Notably, a variety of lateral flow-based fluidic devices
have been successfully brought to market, including pregnancy
tests and, more recently, home diagnostic kits for COVID-19.
In the realm of electrochemical μPADs, paper-based electrodes
are utilized as a key component.14,15

In the domain of chemical and biosensors, the central
component that holds significance is the transducer, as it
assumes a pivotal role in converting reaction or binding events
into quantifiable signals. Within the field of biosensors, the
occurrence of molecular recognition-mediated binding events
on the sensor’s surface has been conventionally transmuted
into either chemical or light-based signal.16−18 Nanomaterials,
due to their inherent characteristics, have been effectual in
generating signals that have found appliances in the advance-
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ment of biosensors and chemo-sensors catering to healthcare
and food safety sectors.19−21 The utilization of these
nanomaterials has been instrumental in the development of
transducer systems. Nanomaterials are precisely defined by
their dimensions, typically falling within the range of 1 to 100
nm or exhibiting at least one dimension within this nanoscale
range. They are frequently classified into various dimensional
configurations, encompassing 0D (particles), 1D (rods), 2D
(sheets), and considerably extra convoluted 3D struc-
tures.22−24 Notably, nanomaterials, namely, silver and gold
nanoparticles, have gained widespread acceptance in the
advancement of transducer technologies, especially in the
domain of microfluidic biosensors. A noteworthy advantage
lies in their remarkable surface area-to-volume ratio., which
translates to a greater number of binding sites and more robust
signals.25−27 Additionally, many nanomaterials exhibit signifi-
cant electrochemical activity, further contributing to robust
signal generation. Moreover, these materials are relatively
straightforward to synthesize, often display low toxicity
(aligned with the Green Biomaterials principles), and can be
conveniently adapted for diverse applications. The key
attribute of nanomaterials lies in their fine-tuning of optical
characteristics, which is possible thanks to the exceptional level
of control that can be applied over particle size. In the field of
microfluidic biosensors, optical techniques such as absorbance
and fluorescence find extensive application as the most
commonly employed methods for signal detection and
measurement.28−30 Various microfluidic systems for the
synthesis of nanoparticles (including MXenes) can be classified
into three distinct categories:31 (i) mixing-oriented micro-
fluidic reactors that rely on continuous flow for hydrodynamic
mixing, (ii) multifield-driven microfluidic reactors, which

combine hydrodynamic flow with various physical fields, and
(iii) droplet-centered microfluidic reactors, which deploy
segmented droplets as enclosed reacting chambers. Also, the
critical process of nanoparticle fabrication involves mixing,
wherein the generation of nanoparticles is initiated through
solvent exchange. The size and monodispersity of nano-
particles are closely linked to the mixing time (τmix). When the
duration of mixing is less than the nucleation time of
nanoparticles (τmix < τagg), it leads to the production of small
nanoparticles with excellent uniformity.

In contrast, when the mixing duration exceeds the
nucleation period (τmix > τagg), it culminates in the creation
of larger nanoparticles, characterized by wider size distribu-
tions. Within the microfluidic context, there is a prevailing
presence of laminar flow attributes, which is evident through
the observation of a low Reynolds number (Re = ρUDh/η).
Here, ρ signifies fluid density; U denotes fluid velocity, Dh
represents the cross-sectional dimension of the microchannel,
and η indicates dynamic viscosity. This fluid flow consistently
remains below the critical threshold, typically ∼103, required to
initiate turbulence. Within the confined microscale domains,
effective mass transfer processes enable microfluidic systems to
achieve impressively brief mixing durations, often on the order
of 1 × 10−4 seconds. This remarkable acceleration translates to
mixing rates up to 1000 times faster compared to their
macroscopic counterparts. To optimize the mixing process
under laminar conditions, a variety of methods have been
devised for microscale applications at low to moderate
Reynolds numbers. These methodologies can be categorized
into three distinct approaches: 1D streamline-based, 2D, and
3D vortex-based mixing techniques as depicted in Figure 1a−
c.32

Figure 1. (a) Straight microchannel measuring 17 mm in length. (b) A square-wave microchannel with a length of 15 mm along the streamwise
direction, featuring seven C-turns. (c) In the 3D setup, inside a spiral tower, the two fluids are injected at various intervals and subsequently mixed
inside of two towers that are joined together. In all cases, the scale bars in the fluorescent microscope images are set at 0.5 mm for reference.
Reproduced with permission from ref 32. Copyright 2003 Springer Nature.
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Ever since the breakthrough of graphene, the spotlight has
been firmly fixed on 2D nanomaterials due to their distinctive
attributes compared with other types of nanomaterial. These
2D nanomaterials exhibit a unique structure where atomic
layers are stacked, akin to the pages of a book, linked by weak
Van der Waals forces. Numerous comprehensive articles
underline the synthesis, manufacturing techniques, and proper-
ties of these 2D nanomaterials.33−35 These materials can be
broadly categorized into four principal groups: (i) MXenes,
(ii) 2D metal oxides, (iii) the graphene family, and (iv)
transition metal dichalcogenides (TMD). The graphene family
extends its scope beyond nanostructures based solely on
graphene, encompassing analogous materials such as graphitic
carbon nitride (g-C3N4), hexagonal boron nitride, white
graphene, black phosphorus, and various other related
compounds. TMD compounds, characterized by the bonding

of a metal element with two chalcogens (referred to as MX2),
are exemplified by materials like WS2 and MoS2 with a planar
structure. The more recent additions to the 2D nanomaterials
are MXenes, which contain a layer of carbon or nitrogen in
between layers of a transition metal.36−38 Further, zinc oxide
and cerium oxide are examples of oxygen atoms linked to a
metal nucleus that represent 2D metal oxides. The inherent
properties of these 2D nanomaterials are striking: an elevated
surface area resulting from their sheetlike structure, notable
conductivity due to localized electronic states enabling charge
carrier recombination, commendable optical characteristics,
substantial mechanical strength, and considerable flexibility.
This last trait holds significant importance for the advancement
of flexible electronics, including wearable sensors39−41 which
may have a noticeable impact on healthcare.42,43 In this
Perspective, the discussion herein focuses on recent

Figure 2. Schematic diagram of the structural configurations found in MXenes. These two-dimensional materials are characterized by a common
chemical formula, Mn+1XnTx, where M stands for a member of transition metals, X for nitrogen and/or carbon, and Tx for terminations at the
metal’s surface. Depending on how many layers of transition metal (and carbon and/or nitrogen) are present in the MXene structure, n can take on
values between 1 and 4. For example, specific instances include Ti2CTx (n = 1), Ti3C2Tx (n = 2), Nb4C3Tx (n = 3), and (Mo,V)5C4Tx (n = 4).
Recent research has uncovered Mo4VC4Tx, a solid solution MXene with five M layers that exhibit twinning within these M layers, representing a
departure from previously known MXene structures.44 Solid solutions or ordered arrangements can be formed from MXenes when one or more
transition metal atoms occupy the M sites. These ordered structures encompass various types, including in-plane ordered varieties, referred to as i-
MXenes (e.g., (Mo2/3Y1/3)2CTx), in-plane vacancy structures (e.g., W2/3CTx), and out-of-plane ordered structures, known as o-MXenes. Two
distinct configurations are possible in o-MXenes: one in which a single layer of M″ transition metal is sandwiched between two layers of M’
transition metal (such as Mo2TiC2Tx), and the other in which two layers of M″ transition metals are also sandwiched between two layers of M’
transition metal (e.g., Mo2Ti2C3Tx). Additional configurations, namely the M5X4 structure’s (bottom row) existence of one or three M″ layers
sandwiched between M’ layers, are still being considered. MXenes with high entropy and other higher-order single Mor o-MXenes are just two
examples of the unproven possible structures represented in the diagram. Reproduced with permission from ref 45. Copyright 2021 Science.
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perspectives and potential applications centered around
MXene microfluidics.

MXenes arise from the exfoliation of ternary carbide and
nitride ceramics, boasting a generalized formula represented by

Figure 3. (a) Schematic illustration of wearable patch cortisol sensor integrated with a microfluidic system, (b) EIS method assisted cortisol
biomarker detection, (c) corresponding linearity, (d) selectivity assessment in the presence of progesterone, prednisolone, corticosterone, and
aldosterone, and (e) analysis of reproducibility. Reproduced with permission from ref 54. Copyright 2021 Elsevier.
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Mn+1XnTx, where n can be 1, 2, or 3 (as shown and described in
Figure 2). In this equation, M characterizes a transition metal,
X signifies nitrogen and/or carbon, T denotes surface groups,
and x represents the matching number.41,46,47 At present, a
collection of over 70 MXene variants has been established.48,49

Among these, Ti3C2 stands out as one of the extensively
explored members within diverse fields like pollutant manage-
ment, ion batteries, supercapacitors, antibacterial applications,
and tumor treatment, among others. The integration of MXene
has the potential to address prevailing limitations in
continuous sensing while broadening the range of sensor
applications.50−53 For instance, Nah et al. designed a wearable
microfluidics-integrated immunosensor to detect sweat cortisol
noninvasively. They developed a cost-effective and one-touch
system and based on their report, their fabricated Ti3C2Tx-
based immunosensor revealed applicability in the dynamic
range of 0.01−100 nM and limit of detection of 88 pM (Figure
3).54

The potential of MXene arises from several key factors. (i)
The accordion-like multilayer structure seen in MXenes like
Ti3C2Tx provides a substantial surface area that is well-suited
for tasks such as target detection, enzyme incorporation, and
electrocatalytic reactions. (ii) The exceptional physical and
chemical properties of MXenes offer a means to address
potential stability challenges that could otherwise emerge. (iii)
The inherent abundance of surface groups in MXene allows for
bonding or adsorption of additional biorecognition elements,
thereby heightening the signal responsiveness. (iv) Both the
prior explorations and the current study affirm the robust
resistance of MXene to passivation and fouling. (v) The
established biocompatibility of MXene is evident through
enzymes that can effectively adorn its surface, thus ensuring the
prolonged activity of enzymes, and thereby securing sensor
stability. (vi) The favorable electrical conductivity intrinsic to
MXene renders it a superb choice for enhancing the

capabilities of electrochemical sensors. These individual
attributes show that the potential relationship between
microfluidic technology and the porosity of MXenes could
be established for various applications and material synthesis.
As a matter of material applications, MXenes with controlled
porosity can be utilized with microfluidics. For instance, they
can be utilized for the preparation of porous films or scaffolds.
In the case of material synthesis, although the conventional
synthesis procedure requires harsh conditions, microfluidic
technology could potentially be used for the synthesis of
MXenes and to control the porosity of MXenes during their
synthesis. Microfluidic technology provides a cost-effective
path by manipulating temperature, reaction time, flow rate, and
other conditions that can directly influence the formation of
the pores within an MXene structure.55 The MXenes stacking
layers are influential in their physicochemical properties such
as their thermal, mechanical, and electronic behavior. Altering
these criteria will affect the final performance when integrated
into microfluidics. MXenes, these 2D compounds derived from
their 3D counterparts (MAX phase). Selective etching of the
’A’ element from the MAX phase leads to different layered
structures with M and X atoms. Different configurations can be
adopted by stacking these layers (ABA and ABC) which leads
to different features. The energetic stability of the ABA and
ABC stacking of MXenes can vary through changes in the
energetic barrier (Eb) and reaction step energy (ΔE). These
criteria can be altered when the sample is exposed to different
conditions in microfluidics. It is reported that various ions or
molecules intercalation among MXene layers can also
interchange the stacked atomic layers properties.56 For
instance, the intercalation of NH4

+ and NH3 during the
MXenes delamination procedure led to uniformly spaced
stackings. The fluid flow controllability through microfluidics
can provide more consistent and predictable responses.57 As an
example, Liu et al. have produced a high throughput

Figure 4. Microfluidic synthesis platform schematic illustration and H2O2 sensing procedure. Reproduced with permission from ref 55. Copyright
2022 American Chemical Society.
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microfluidic platform for synthesizing Ti3C2Tx highly effi-
ciently continuously and at room temperature. They have
utilized two micromixers which elements helically integrated
into the microfluidics for enhancing the secondary flow to
promote transfer and interactions during synthesis procedure.
The aggregation has been prevented by rapid mixing and harsh
vortices in 3D micromixers which also led to homogeneous
distribution. The size controlled fabricated composites have
been utilized as H2O2 sensor (Figure 4).55

2. WEARABLE MICROFLUIDIC-ASSISTED MXENES
The production of i-MXenes, which include structures
featuring organized vacancies, such as Ti4C3, Ti5C4, and
Mo4VC4Tx MXenes, has been demonstrated. Additionally,
there has been success in growing nanometer-thin Mo2C
through chemical vapor deposition (CVD).58 Several solid
solution MXenes have also been synthesized, and carbide
MXenes have been transformed into nitrides through treat-
ment in ammonia at elevated temperatures. Furthermore, the
conversion of TMDs to 2D nitrides like Mo5N6 and W5N6 has
been performed topochemically which indicates the potential
for synthesizing many other 2D carbides and nitrides, and such
explorations can be beneficiaries of high-throughput simu-
lations and machine learning to expedite materials discov-
ery.59−61 Predictions and experimental endeavors have
expanded beyond MXenes, encompassing diverse 2D struc-
tures with distinct chemical compositions. This includes 2D
MC2 carbides, such as TiC2 (subject to pending experimental
confirmation), ultrathin MAX phases (commonly known as
MAXenes), vapor-grown 2D MoSi2N4, and a nascent category
referred to as 2D borides (referred to as MBenes)62−64 which
shares a formula akin to MXenes wherein boron is substituted
for the X sites. Anticipations have materialized in certain cases,
leading to the partial exfoliation of particles or the cultivation
of ultrathin crystals within these structures. Electrides like
carbide and nitride electrides, exemplified by Ca2N, have

garnered attention due to their appealing physical properties
despite their limited environmental stability.65 For instance,
2D MoSi2N4 produced in a gas, has a remarkable Young’s
modulus of about 0.5 TPa and a breaking strength of about 66
GPa.65 Density functional theory (DFT) calculations offered
insights into a diverse array of semiconducting two-dimen-
sional (2D) structures characterized by the general formula
MA2Z4 wherein M signifies a transition metal, A can be either
Ge or Si, and Z exhibits variations in the form of N, P, or As.
Furthermore, computational predictions have illuminated the
promising potential of 2D MC2 carbides, including materials
such as NbC2, TaC2, and MoC2, across a wide spectrum of
applications spanning from biomedical sciences to catalysis,
encompassing tasks like the oxygen evolution reaction (OER)
and hydrogen evolution reaction (HER) (Figure 5).66−69

Partially etched borides have emerged as promising candidates
for electrocatalytic HER applications. In a fashion analogous to
MAX phases, the bonds between M and A elements in MAB
phases exhibit a lower strength relative to M−B bonds,
suggesting the possibility of discerning etching of A-elements.
Nevertheless, prior attempts have yielded multilayer MBenes,
where periodic elimination of aluminum layers resulted in
stacking faults comprising a single aluminum layer, thereby
impeding further deintercalation and exfoliation. Conse-
quently, further research is imperative to pinpoint suitable
precursors and attain the thorough exfoliation of MAB phases
into MBenes.70−73

For the first time, an electrochemical system comprised of
microfluidic channels and chambers impedimetric immuno-
sensor has been created for noninvasive monitoring of the
cortisol biomarker in sweat of humans.54 The sensor employed
in this study featured a three-dimensional (3D) electrode
network composed of laser-burned graphene (LBG) flakes
loaded with Ti3C2Tx MXene wherein the polydimethylsiloxane
(PDMS) substrate enabled the fabrication of this elastic and
flexible patch sensor. By removal of the polyamide (PI)

Figure 5. Schematic illustration of the structural design and synthesis of MXene. The exploration of novel MXene configurations and formulations,
along with the precise management of their surface modifications, coupled with their integration with other 2D materials in 2D heterostructures
and superlattices, holds the potential to introduce fresh characteristics and broaden the application scope of MXenes across diverse domains. They
can be used in actuators, sensors, optical components, artificial memory devices, quantum computers, and Internet of Things (IoT) technologies,
among many other applications. Reprinted (reproduced) with permission from ref 45. Copyright 2021 Science.
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covering, LBG could be transferred to the PDMS substrate.
During this process, an intentional gap was created by laser
burning, resulting in disconnections between the laser-burned
graphene flakes, which in turn led to a reduction in the LBG
electrode’s efficiency as an electrochemical device. To mitigate
this issue of interflake disconnection arising from the burning
and transfer procedures, the electrode was enriched with highly
conductive Ti3C2Tx MXene. The microfluidic system proposed
in this study was created by using a 3D-printed mold and
PDMS, enabling the attachment of the sensor to the skin.
Sweat was collected and naturally transported through the
channel to the chamber through inherent pressure mecha-
nisms. The effective incorporation of Ti3C2Tx MXene was
validated through various techniques, including XPS (X-ray
photoelectron spectroscopy) and FESEM (field emission
scanning electron microscopy) (FESEM). Under optimized
parameters, the cortisol immunosensor constructed using
Ti3C2Tx MXene/LBG/PDMS displayed a linear response
and achieved a detection limit of 0.01−100 nM and 88 pM,
respectively (Figure 6). Based on the comprehensive
examinations conducted, it can be inferred that the devised
methodology is suitable and versatile for the point-of-care
detection of cortisol biomarker.
In another work, an innovative electrochemical sensor patch

system was developed to constantly scrutinize the concen-
tration of (K+) in human sweat in real-time. This system is
ultrasensitive, adaptable, wireless, battery-free, and entirely
integrated.74 The system comprises a microfluidic unit
designed for on-site sweat collection applications. It employs
a hybrid multidimensional network, combining multiwalled
carbon nanotubes (MWCNT) and MXene-Ti3C2TX, to
establish a highly activated surface area, thus promoting
rapid charge transfer and ensuring effective adsorption of the
valinomycin membrane. This approach effectively shields the

ionophore and facilitates the efficient transport and immobi-
lization of potassium ions ([K+]). Accelerated ion diffusion
kinetics is further enhanced by the regulated porosity of
carbon-based materials. When deployed for the detection of
low concentrations, this novel hybrid nanonetwork topology
greatly improves electrochemical stability and sensitivity by
eliminating noise and signal drift. The developed sensor
exhibits notable sensitivity to ion concentration, initially at a
rate of 63 mV/dec, which is further enhanced to 173 mV/dec
through an integrated amplification system ensuring excep-
tional selectivity. The sensor’s measurements are wirelessly
transmitted to a smartphone via Near Field Communication
(NFC). To optimize sweat collection from the surface of the
skin and minimize sensor contamination, a microfluidic
channel is seamlessly combined with the electrochemical
sensor patch. Moreover, the adaptable nature of the sensing
patch enables its usage for on-site detection of various other
biomarkers. One approach to achieving this goal is by
integrating selective membranes tailored for specific bio-
markers onto the working electrode. Within the NFC chip,
the SD14 module houses a multichannel sigma-delta analog-to-
digital converter, boasting a remarkable 14-bit resolution.
Additionally, the NFC chip is equipped with both a
programmable gain amplifier (PGA) and a sigma-delta
analogue-to-digital converter (ADC) (Figure 7).

The [K+] sensor’s output was captured via a 14-bit ADC
converter. Subsequently, a dedicated smartphone appliance
was established using Android Studio software to interpret and
calibrate the ADC’s output voltage, presenting it as the [K+]
concentration. The NFC sensor system was initiated wirelessly
using RF power supplied by the smartphone. Upon
approaching a smartphone, the sensor system’s compatibility
with NFC protocols is detected. After being instructed to begin
analog-to-digital converter (ADC) conversions for rectified

Figure 6. Cortisol sensor was systematically evaluated through the following procedures: (a) cyclic voltammetry (CV), (b) electrochemical
impedance spectroscopy (EIS), (c) diffusion-controlled analysis spanning a range from 25 to 250 mV/s, and (d) determination of the
corresponding linear relationship. Reproduced with permission from ref 54. Copyright 2021 Elsevier.
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voltages, the device also sounds an auditory prompt tone to
denote the start of data exchange and subsequently sends the
potential value correlating to the [K+] concentration wirelessly
to the smartphone. The sensor operates within a two-electrode
system and is powered electrochemically, thus eliminating the
requirement for batteries or other external power sources.
Between the electrodes, the sensor produces a potential of
100−400 mV in response to [K+] concentration fluctuations in
the range of 1 to 32 mM. In order to increase the standing
voltage source (SVSS) voltage to ∼125 mV above ground, the
working electrode (WE) is linked to an ADC interface, while
the reference electrode (RE) is connected to the SVSS. This
adjustment mitigates minor inaccuracies stemming from the
ADC’s nonlinear behavior near ground potential. To effectively
represent the potential range of the [K+] sensor, extending
from 100 to 400 mV, the NFC chip configuration incorporates
cascaded integral comb filtering applied to the sampled data
(Figure 7). In order to decrease background noise, this method
uses an extraction ratio of 256. The status register is
programmed to indicate when data sampling is complete,
and data is ready during continuous data readings.

Continuous monitoring of glucose levels in sweat using
wearable noninvasive sensors holds great promise for the
management and treatment of diabetes. However, the efficient
development of such sensors faces obstacles related to glucose
catalysis and the collection of sweat samples. In a separate
study, researchers have presented a novel electrochemical
sensor that is both flexible and wearable, enabling the
continuous and nonenzymatic detection of glucose in
sweat75 wherein Pt nanoparticles and MXene (Ti3C2Tx)
nanosheets were combined to make a catalyst termed Pt/
MXene. Under neutral circumstances, this catalyst demon-
strated a broad linear range for glucose detection (0.0−8
mmol/L). The structure of the sensor was optimized by
immobilizing the Pt/MXene catalyst in a conductive hydrogel,
which greatly increased its stability. By incorporation of a
microfluidic patch onto the sensor for sweat collection, a
wearable glucose sensor with this optimal shape has been
developed. The sensor was evaluated for its ability to detect
glucose levels in sweat, and it successfully detected changes
associated with the body’s energy replenishment and
consumption, similar to changes in blood glucose levels. In

Figure 7. (a) This diagram provides an overview of the individual components that constitute the battery-free, wireless, and flexible microfluidic/
electronic system. (b, c) The flexible antenna and circuits are crafted using a process involving lithography and etching techniques. (d) For
safeguarding purposes, the flexible circuits are enclosed within PDMS (polydimethylsiloxane). (e) The microfluidic system is presented in detail.
(f) Demonstrated here is an exceptionally lightweight and compact circular patch sensor system, boasting a 3.3 cm diameter. (g) The system
showcases real-time wireless NFC sensor communication with smartphones. (h) This comprehensive setup encompasses electronics design, a
measurement strategy, and an all-inclusive arrangement for experimentation. (i) Analyzing electrolyte losses from athletes’ sweat has the potential
to assist healthcare professionals in devising individualized water and electrolyte replacement plans. Reproduced with permission from ref 74.
Copyright 2021 Elsevier.
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vivo testing on sweat demonstrated the potential of the sensor
for continuous glucose measurement, which is crucial for
diabetes treatment and management. While wearable monitor-
ing systems have made significant advancements, many designs
primarily focus on detecting physical parameters or metabo-
lites, without considering the combination of miniaturization,
multimodality, and microfluidic channels. However, in another
study, researchers developed a patch-based wireless system that
addresses these limitations. This innovative system combines
multimodal biosensing, encompassing both biochemical and
electrophysiological measurements, with the integration of
microfluidic channels. By incorporating these features, the
researchers have created a comprehensive and versatile

monitoring system that offers a more holistic approach to
track and analyze various physiological markers.76 The system
employs flexible materials to enhance wearability and user-
friendliness, while also enabling continuous real-time monitor-
ing capabilities. A microfluidic channel-integrated glucose
biosensor, utilizing reduced graphene oxide, is developed that
exhibits noteworthy sensitivity, with 19.97 μA mM−1 cm−2

(44.56 without fluidic channels) and being effective within
physiological levels (10 μM−0.4 mM). The biosensor
showcases commendable long-term stability and resistance to
bending. The sensors within the patch undergo initial
validation through real-time tests on sauna gown sweat with
participation from five individuals, each perspiring three times.

Figure 8. Chemical and temperature-sensitive patch was subjected to real-time on-body assessment involving five participants in three distinct
scenarios: premeal and at 1 and 2 h after meal. This assessment utilized an electrochemical workstation. (a) Seated participant donning a sweat
gown, which promotes the generation of sweat. (b, c) Diagrams elucidate the data collection process for glucose, pH, and temperature concerning
evaluation of the patch. (d) Simultaneous temperature readings near the patch were obtained by using both the developed sensors and
commercially available counterparts for comparative analysis. (e) Sweat pH measurements were concurrently taken deploying the custom biopatch
and a traditional pH meter, allowing for a side-by-side comparison. (f) The association between the sweat and blood glucose levels was
concurrently established using the devised patch and a glucometer. Reproduced with permission from ref 76. Copyright 2023 American Chemical
Society.
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The system outlined here integrates multimodal glucose and
electrocardiogram (ECG) sensing, employing continuous
adjustments in response to fluctuations in sweat pH and
temperature to improve the precision of the measurements. To
maintain minimal skin contact impedance (measuring at 40.5
kΩ cm2), the ECG electrodes were created to achieve high-
quality electrophysiological signals (signal-to-noise ratios of
23.4−32.8 dB). Laser-burned hierarchical MXene was coupled
with poly(vinylidene fluoride) and conductive carbon nano-
fibers to create electrodes. To evaluate the system’s perform-
ance, five patches were positioned on the chests of five
participants during a real-time monitoring session. The
participants wore a sauna gown to prompt sweat production,
and the records, including sweat glucose and ECG readings,
were collected wirelessly by using an electrochemical work-
station. This methodology allowed for accurate and continuous

monitoring of sweat composition and ECG data during
physical exercise, providing valuable insights into the
participants’ physiological responses in real-time. Figure 8a
depicts a participant seated in a sauna robe, with a patch
securely attached to the chest. Approximately 5 min later,
perspiration commenced, and it took an additional 5 min to
completely fill the fluid channel. The procedure for measuring
pH, temperature, and glucose using the electrochemical
workstation is detailed in Figures 8b and c. This standardized
procedure includes various steps, such as patch placement,
meal composition, and sauna settings, which were maintained
consistently for all participants. Before the patches were
applied to the chest area, which was cleansed using alcohol-
based swabs to ensure cleanliness, each patch underwent a
stabilization process. Since pH and temperature are so
important to precise measurements, they were measured

Figure 9. Exploring the fluorescence detection mechanism of 3D Fe3O4/MXene nanospheres: (a) Fluorescence image displaying FAM-AptAβO in
the presence of Fe3O4/MXene. (b) Another fluorescence image featuring AptAβO together with AβO. (c) Histogram comparing the mean
fluorescence intensities between FAM-AptAβO+Fe3O4/MXene and AptAβO+AβO. (d) Fluorescence intensities of pure FAM-AptAβO, FAM-
AptAβO+Fe3O4, FAM-AptAβO+MXene, and FAM-AptAβO+Fe3O4/MXene conducted under uniform experimental conditions. (e) Fluorescence
intensities of FAM-AptAβO across varying concentrations of Fe3O4/MXene. (f) Statistics on the efficiency of fluorescence quenching by Fe3O4/
MXene at various concentrations. (g) Offers a schematic depicting the process of fluorescence quenching and restoration involving FAM-AptAβO.
Reproduced with permission from ref 77. Copyright 2022 American Chemical Society.
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before the glucose detection to calibrate the sensor’s response.
The precision of the sensors was checked by comparing the
results to those obtained from the standard pH and
temperature meters. This procedure ensures that the measure-
ments taken during the study are reliable and consistent across
all participants, allowing for an accurate analysis and
interpretation of the data. The average temperature of all
participants is plotted in Figure 8d. Since rapid sweating could
only be achieved thanks to the sauna suit’s elevated
temperature, measurements were above average (Figure 8d).
Notably, the temperature data gathered from chest-placed
biopatches differed from commercial data, which originated
from earlobe measurements for each individual. This disparity
was due to the commercial thermometer’s capability to
accurately measure earlobe temperature. Nevertheless, the
congruence between temperature sensor data and commercial
data trends validated the sensor’s precision. Comparisons of
pH data (Figure 8e) exhibited minimal fluctuation, and the
process involved collecting sweat in a beaker and immersing
the pH probe of the pH meter for measurement. On the other
hand, the pH sensor integrated within the fluidic channel of
the biopatch captured data instantly. The pH values obtained
from the biopatch closely correlated with the readings from the
pH meter, thus providing confirmation of its accuracy.

3. DIAGNOSIS OF DISEASES
The detection of Amyloid β protein oligomers (AβO) plays a
crucial role in the diagnosis of Alzheimer’s disease (AD). To
meet the demand for a dependable method of detecting AβO,
researchers have introduced an innovative fluorescent bio-
sensor. This biosensor brings together FRET (fluorescence
resonance energy transfer)-based fluorescence analysis with a
microfluidic chip made from poly(dimethylsiloxane) (PDMS).
By combining these elements, scientists aim to develop a
reliable and efficient tool for early diagnosis and treatment of
AD.77 In this groundbreaking design, AO aptamers with a
carboxyl fluorescein modification serve as the fluorophore
while introducing Fe3O4/MXene nanospheres as a new type of
fluorescence quencher, marking the first instance of combining
these elements. The detection platform makes use of a PDMS-
based multichamber microfluidic chip. Importantly, the
biosensor exhibits a remarkable linear connection with the
fluorescence intensity of the logarithm of the AβO
concentration, ranging from 0.10 to 200 nM. Its detection
limit stands at ∼0.05 nM, achieved with remarkably small
sample volumes of only 4.50 μL. These outcomes underscore
the exceptional performance of the engineered biosensor,
rendering it suitable for a wide array of applications in the
general domain of intelligent healthcare, encompassing medical
diagnoses, health monitoring, and advanced biological
research. The potential for DNA-based fluorescent detection
is underscored by the inherent fluorescence quenching capacity
and DNA adsorption capabilities exhibited by Ti3C2-MXene.
In this work, the fluorescence emission from FAM-AptAβO is
induced by a specific excitation wavelength. Subsequent
exposure to Fe3O4/MXene results in a notable reduction in
the fluorescence of FAM-AptAβO. However, the introduction
of AβO leads to a restoration of the quenched fluorescence. As
depicted in Figure 9a−c, the gray value of the FAM-AptAβO
+AβO sample markedly surpasses that of the FAM-AptAβO+
Fe3O4/MXene sample. To further corroborate the fluorescence
quenching phenomenon attributed to Fe3O4/MXene, FAM-
AptAβO was subjected to incubation with MXene, Fe3O4, and

Fe3O4/MXene under identical experimental settings. Sub-
sequently, the fluorescence strength of these samples was
assessed via a fluorescence microplate. As illustrated in Figure
9d, distinct peaks corresponding to FAM fluorescence at an
approximate wavelength of 520 nm were identified. Following
incubation with Fe3O4, there was a minor reduction in the
fluorescence intensity of FAM-AptAβO, indicative of the slight
fluorescence quenching capability of the Fe3O4 nanoparticles.
Although Fe3O4 contributed to fluorescence quenching in this
investigation, its effect was mitigated by MXene’s encapsula-
tion. Upon exposure to Fe3O4/MXene, a conspicuous decrease
in the fluorescence intensity of FAM-AptAβO was discerned.
Interestingly, the fluorescence strength of FAM-AptAβO
+MXene was marginally higher relative to that of FAM-
AptAβO+Fe3O4/MXene, attributable to the tendency of 2D
MXene sheets to readily stack, thereby diminishing the
effective surface area available for fluorescence quenching.
These results affirm the primary function played by MXene in
the process of fluorescence quenching, aligning with previously
documented research.

In another study,78 researchers have created a microfluidic
chip that has been modified with hemin, resulting in the
generation of dual electric signals for the precise finding of uric
acid (UA); the addition of hemin serves as a catalyst and
produces an inherent reference signal. To enhance the signal,
attachment substrates, such as alkalinized titanium carbide
(alk-Ti3C2Tx) and carbon nanotubes (CNT) are used. The
collaborative impact of CNT, alk-Ti3C2Tx, and hemin together
help to create an electrochemical sensor of remarkable
proficiency, boasting advantageous catalytic activity and a
distinct inherent signal capability. Scientists have undertaken
extensive density functional theory calculations to compre-
hensively explore the interplay between the sensor’s structural
attributes, reactivity, and potential signal output mechanism.
Subsequently, this functionalized sensor is seamlessly embed-
ded into a microfluidic chip, resulting in the development of a
portable electrochemical sensing platform. This platform
empowers a sequential series of sample dispensation stages,
including initial filtration, target enrichment, and dependable
analysis. The enhancements made to the functionalized
microfluidic platform have resulted in remarkable performance
when determining UA, boasting a detection limit as low as 0.41
μM. Significantly, the platform has demonstrated precise UA
detection in urine samples, representing a highly favorable
avenue for biomolecule monitoring. The assessment of the
platform was approached from two perspectives. Initially, it
was deployed for the analysis of UA in serum specimens using
the standard addition protocol. The results demonstrate that
the recovery ratio falls within the range of 93.13% to 106.52%,
affirming its practical applicability. Second, its application also
lies in dietary management. Currently, there is a global rise in
the burden of gout, influencing from different factors such as
alcohol intake, genetic predisposition, certain medications, and
excessive consumption of purine-rich foods, leading to elevated
UA levels and potential gout attacks. A purine-rich meal was
used to test the efficacy of the designed platform in diet
administration, and urine specimens were obtained for analysis.
In light of this, the UA strength in urine exceeded the
maximum measurable value, necessitating a 2-fold dilution of
the original samples prior to testing. Remarkably, UA levels rise
following the consumption of a purine-rich diet and afterward
decline over time. These outcomes are in strong agreement
with those obtained from a commercial UA quantification kit,
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underscoring the platform’s significant potential for UA
monitoring. The research acknowledges the importance of
VOCs (volatile organic compounds) in urine as valued
biomarkers for noninvasive diagnosis of the disease. To
address this, a straightforward strategy based on coordination
has been utilized to construct a library of gas-sensing materials.
The capability for detecting and analyzing VOCs has been a
key feature of these materials, which are based on porous
MXene frameworks (MFs).79

The MFs-based library, comprising a diverse range of
modules with adjustable structures and varying compositions,
has been developed to comprehensively address the needs of
gas-sensing applications. Utilizing laser-prompted graphene
interdigital electrode arrays and laser engraving micro-
chambers, a microchamber-hosted MF (MHMF) electronic
nose (e-nose) was successfully engineered. The MHMF e-nose
boasts remarkable capabilities in pattern identification,
allowing for concurrent detection and distinction of intricate
volatile organic compounds (VOCs). What’s more, the
MHMF e-nose operates as a plug-and-play module, paving
the way for the creation of a modular POCT (point-of-care
testing) platform designed for real-time wireless scrutinizing of
urinary volatiles in clinical specimens. Employing advanced
machine learning techniques, this POCT platform achieves
highly precise noninvasive diagnoses of a wide range of

diseases, demonstrating an impressive accuracy rate of 91.7%.
This development opens promising avenues for early disease
detection, continuous monitoring of disease progression, and
related research initiatives. As a proof-of-concept, a typical MF
(PDZn@MXene) has been fabricated by employing MXene
nanosheets and a coordination-driven assembly approach,
resulting in a network structure interconnected by Zn2+-
anchored polydopamine (PDZn). (Figure 10). It was
subsequently illustrated that modifications to metal compo-
nents, chemical ligands, and their reaction sequences allowed
for the creation of diverse modules, each possessing distinct
compositions, structures, and functionalities, thus leading to
the generation of a library of chemically tailored MFs with
precisely defined attributes. Once prepared, MFs can be
utilized as reservoirs of sensing materials that exhibit different
responses to various VOCs.

A grid of LIGIE (laser-induced graphene interdigital
electrodes) (in a 2 × 4 configuration) was manufactured
using laser engraving technology to accommodate eight
distinct MFs, facilitating the creation of a sensor array
fabricated for the detection of VOCs. To optimize space
utilization and maintain cost-efficiency, this sensor array was
seamlessly integrated into a microchamber, resulting in the
modular construction of a compact MHMF e-nose measuring
dimensions of 5.44 cm in length, 4.50 cm in width, and 0.42

Figure 10. Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. (a) The study focuses on the creation of
adaptable modules utilizing dopamine, metal ions, and ligands through techniques involving metal ion doping, ligand engineering, and sequence
regulation. (b) The modular assembly of porous MXene frameworks (MFs) is driven by coordination, involving the choice of modules and MXene,
and the establishment of linkages between modules and MXene. (c) The development of the MHMF e-nose, and a portable POCT platform
facilitates the monitoring of urinary VOCs for noninvasive disease diagnosis, with the assistance of machine learning ML techniques. Reproduced
with permission from ref 79. Copyright 2022 American Chemical Society.
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cm in height. The MHMF e-nose was conceived as a flexible
chamber-sensor-on-a-chip capable of continuous monitoring of
the chemiresistive reactions of MFs to diverse VOCs. The
porous organization of the MFs, in conjunction with the
microchamber’s configuration, expedited swift response and
recovery times, consistently achieving these within 1 min.
Furthermore, this configuration showcased outstanding rever-
sibility and heightened sensing prowess when exposed to
various VOCs. Functioning as a versatile sensory tool, the
MHMF e-nose exhibited substantial discrimination capabil-
ities, enabling the simultaneous detection and pattern
recognition of intricate VOC mixtures. Leveraging the
MHMF e-nose as a recognizing component, a portable
POCT system was assembled to analyze urinary volatiles in
clinical samples related to health, diabetic comorbid depression
(DCD), liver impairment (LI), and diabetes (D). Employing
machine learning (ML) techniques, this developed POCT
platform achieved noninvasive disease diagnosis with a
remarkable precision rate of 91.7%, which may surpass most
similar platforms’ precision rates.
The simultaneous detection of multiple components with

high sensitivity and selectivity is crucial in various applications,
including environmental monitoring and healthcare. However,
achieving this has been a long-term challenge, mostly because
conventional sensors rely on a single sensing mechanism. To
address this, researchers have utilized the benefits of
microfluidic chips and SERS (surface-enhanced Raman
spectroscopy). By combining these technologies, they have
developed a smart single-chip solution that enables the
simultaneous detection of any combination of VOCs. This
advancement has the potential to revolutionize sensing
capabilities and expand the range of applications for gas
sensors.80 This is achievable by incorporating different
detection units that operate based on either a chemisorption
or physisorption mechanism. Microfluidic components and
multiplex nanostructures have been effectively integrated on a
single chip, allowing for a tunable sensor design for a broad
spectrum of volatile chemicals. On-chip signal amplification is
made possible by this integration as well, which further
improves reproducibility. A proof-of-concept experiment has
been conducted that could identify nine different gases�
including aromatic compounds, sulfides, ketones, and
aldehydes�in a single mixture. Despite having an error rate
of roughly 8%, this detection was remarkably sensitive to the
parts per billion level, selective, and robust. The flexibility of
this universal gas sensor was evaluated in two real-world
settings: tracking interior air pollution and analyzing exhaled
breath samples to identify disease. For SERS detection, a
sensing area was configured as a 3 × 3 array, comprising three
units termed UA, UB, and UC. Each unit featured three dots to
minimize random errors. UA and UB utilized SERS substrates
created using Au@Ag@Au nanocubes, coated with a layer of
Ti3C2Tx MXene to enhance absorption efficiency. In the case
of UC, Au@Ag nanocubes were employed to facilitate the
formation of Ag−S bonds. Using a colloidal self-assembly
technique and a well-established tape-assisted substrate
transfer strategy, this detecting array may be constructed
with minimal effort.
The fabrication technique used in this study offers several

advantages, including simplicity, speed, and cost-effectiveness,
making it suitable for practical applications. By combining
programmable detection units with various principles into a
single chip, the detection of various gases such as aromatics,

aldehydes, ketones, and hydrogen sulfide were rendered
possible by deploying ordered 3D SERS substrates and
generating vortices within the chip. The simultaneous
achievement of high sensitivity at the parts per billion level,
exceptional selectivity, and robustness (with an error rate of
∼8%) is hard to replicate with other gas sensor technologies.
Indoor air quality monitoring and breath analysis were used to
evaluate the sensor’s universal gas detection capabilities.
Despite complicated interferences, the results demonstrated
the sensor’s immense selectivity. The SERS-microfluidic
technique has benefits, including portability, low cost, speedy
reading, and scalability. It is also simple to increase the number
of analyzable gases by switching out the gas-sensitive
components. Changes in the SERS signal initiated by the
realization of coordinating bonds among Fe(II) and CO allow
for the detection of carbon monoxide when Dinitrophenylhy-
drazine (DNPH) is substituted with Fe(II) metalized 5-
[(triisopropylsilyl)thio]-10,20-diphenylporphyrin (Fe-TDPP).
In order to accelerate the creation of universal gas sensors for
complex real-world samples, the research team proposes
adopting programmable integrated chips as a strategy. This
work may also inspire the development of data-driven
applications in the field.

4. CUTTING-EDGE APPLICATIONS
Designing complex and advanced fibers with a vertical porous
structure and significant electrochemical activity is essential for
the advancement of high-performance fiber-shaped super-
capacitors (FSCs) although this is a difficult task. Researchers
have devised a solution to this problem by creating hybrid
fibers with a predetermined hierarchy through a microfluidic
synthesis process. These fibers combine vertically aligned and
conductive Ti3C2Tx MXene (VA-Ti3C2Tx) with interstratified
electroactive COFs (covalent organic frameworks), LZU1
(COF-LZU1).81 The generated VA-Ti3C2Tx@COF-LZU1
fibers showcase an impressive gravimetric capacitance of 787
F g−1 when assessed in a three-electrode setup. This
remarkable performance owes itself to their distinctive
attributes, encompassing vertical channels, electrodes with a
variety of redox-active regions, and a huge portion of the
exposed surface area. Furthermore, within solid-state asym-
metric FSCs, these fibers demonstrate exceptional energy
density (27 Wh kg−1), capacitance (398 F g−1), and a
commendable cycling endurance of 20,000 cycles. These
extraordinary energy storage capabilities stem from an
improved distribution of charge density and a decrease in
ion adsorption energy within the vertically aligned and active
hybrid fibers. Such an arrangement expedites swift ion
transportation, ensures efficient ion accommodation, and
fosters effective interfacial electron transfer. Due to their
exceptional electrochemical prowess, these FSCs deliver an
abundant energy supply for a myriad of applications, including
powering devices such as watches, flags, and digital display
tubes. Additionally, they readily integrate with sensors for the
detection of pulse signals. This technological advancement
heralds promising prospects for advancing fiber technology in
the carbon-neutral marketplace. In this study, the researcher
introduced an innovative methodology for crafting hierarchical
structures within a microfluidic wet-fusing spinning technique
that is used to create MXene-based fiber fabrics (MFFs). This
approach substantially enhances the versatility of MFF
electrodes by imbuing them with extraordinary toughness,
excellent conductivity, and improved machinability.82 To
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improve the mechanical integrity of MXene fibers, a novel dot-
sheet structure comprising MXene nanosheets and graphene
quantum dots (GQDs) is employed within a microfluidic
apparatus. These constituents engage in multiple anchor
interactions within the microchannel. Subsequently, the
integrated fiber network structure of Ti3C2Tx/GQDs fabrics
is established through the MWSC process, thereby augmenting
the fabric’s flexibility. Lastly, a core−shell configuration,
denoted as PANI@Ti3C2Tx/GQDs, is synthesized by fostering
polyaniline (PANI) nanofibers through in situ polymerization.
This architecture introduces additional pathways and sites
conducive to ion migration and accumulation. By focusing on
the optimization of morphology and microstructure, this
method is endowed with significant implications for the
scalable production of conductive fabric electrodes, as it offers
a practical approach to enhance the mechanical endurance and

electrochemical properties of these electrodes simultaneously.
In this study, a Zinc(Zn) nanowall array sheath is raised
vertically onto an anisotropic Ti3C2Tx core by the establish-
ment of TiOZn/TiFZn chemical linkages, yielding hierarchi-
cally ordered Zinc(Zn)@Ti3C2Tx MXene core−sheath fi-
bers.83 Fully developed micro/mesoporosity, organized ionic
routes, facilitation of rapid interfacial electron conduction, and
the capacity for scaled-up manufacturing can all be attributed
to the microfluidic assembly and microchannel reactions,
which are extremely efficient processes. These improvements
make charge transfer and intercalation much more efficient.
The resultant ZIF−L(Zn)@Ti3C2Tx fiber exhibits a substantial
capacitance of 1700 F cm−3 and demonstrates exceptional rate
performance when deployed in a 1 M H2SO4 electrolyte.
Furthermore, solid-state asymmetric supercapacitors employ-
ing ZIF−L(Zn)@Ti3C2Tx fibers exhibit impressive character-

Figure 11. Electrochemical functioning of a solid-state ZIF-67@Ti3C2Tx FSC is described as follows: (a) CV curves recorded at scan rates ranging
from 1 to 20 mV s−1. (b) Galvanostatic Charge−Discharge (GCD) curves were obtained at current densities varying from 0.2 to 1 A cm−3. (c)
GCD curves illustrate the performance of two FSCs when connected in both series and parallel configurations. (d) Assessment of the bending
steadiness under various angles, accompanied by photographs depicting the FSC at different bending angles (inset). (e) Examination of motion
stability over a duration of 0 to 20 h, with the corresponding GCD curves at a current density of 1 A cm−3 provided in the inset. (f) Capacitance
retention and values were observed at different applied temperatures, with CV curves recorded at a scan rate of 20 mV s−1 shown in the inset. (g)
Photographs of a capacitive supercapacitor (CSC) powering LED lights. (h) Photograph of a CSC deployed to power a display. (i) Photograph of a
CSC driving an electric fan. (j) Photographs demonstrating a self-powered system using FSC to drive a pinwheel. (k) Photographs depicting a self-
powered system employing FSC to activate a rolling bell. Reproduced with permission from ref 84. Copyright 2022 American Chemical Society.
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istics, including high energy density (measuring at 19.0 mWh
cm−3), excellent capacitance (854 F cm−3), remarkable flexible
and wearable properties, and long-lasting cyclic stability
(withstanding 20 000 cycles). Water level and earthquake
alarm devices can be powered by solar-powered applications in
view of these characteristics.
For high-performance FSCs (fiber-based supercapacitors), a

key factor is the sophisticated fabrication of heterostructured
fibers with organized transport channels and porous frame-
works that enable fast ion and electron kinetics. However, the

restricted capacity of such FSCs to store energy has typically
prevented their broad implementation. Fibrous restacking and
insufficient interfacial charge transfer are blamed for this
shortcoming. The porous ZIF-67 (zeolitic imidazolate frame-
work-67) polyhedron shell is evenly packed onto a highly
conductive Ti3C2Tx core in this study utilizing a flexible
microfluidic method, creating a well-ordered core−shell fiber84

(Figure 11). The utilization of the ZIF-67@Ti3C2Tx fiber
results in the generation of an improved porous structure, the
establishment of ordered porous pathways, endowed with a

Figure 12. SERS-Vortexene chip was characterized and tested in several stages: (a) The herringbone chip’s internal gas flow field simulation. (b)
Channel near the deposited substrate side view. (c, d) Evaluating the gas flow field and (e) calculating streamlines near the substrate using
simulation. (f) Visualizing the process of applying a monolayer Ti3C2Tx MXene onto a bimetallic nanoparticle liner. (g) Scanning electron
microscope (SEM) images. The scale bar in the SEM image inset represents 1 μm. (h) Presenting the SERS signals obtained for benzaldehyde
under various testing conditions. The results from the SERS-Vortexene chip are shown in the yellow spectrum. The herringbone chip’s blue
spectrum is consistent with data obtained from a substrate devoid of MXene. The red spectrum represents the control data obtained from a
substrate without any coating. (i) Measuring the intensity of typical peaks of benzaldehyde under various testing conditions. Reproduced with
permission from ref 85. Copyright 2021 American Chemical Society.
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larger exposed surface area, and the promotion of in situ
interfacial electron transfer. This leads to exceptional
volumetric capacitance (972 F cm−3) and long-term cycling
steadiness (with 90.8% capacitive preservation after 20,000
cycles) when the fiber is deployed in 1 M KOH electrolytes.
The flexible solid-state ZIF-67@Ti3C2Tx FSCs also exhibit
consistent capacitance, robust bending and wearability, and
reliable temperature-reliant performance. These supercapaci-
tors are capable of providing reliable power to a wide range of
electrical gadgets, including LEDs, electric fans, displays,
pinwheels, and rolling bells, due to their exceptional electro-
chemical accomplishments. This discovery paves the way for
realistic improvements in tiny energy technologies and
intelligent electronics.
By fusing a transferable 3D SERS substrate with ultraflexible

Ti3C2Tx MXene, a SERS-Vortexene chip was developed to
demonstrate concurrent and straight multiplex gas sensing
(Figure 12).85 The chip demonstrated exceptional sensing
capabilities, including high sensitivity, the ability for multiplex
detection, and reliable reproducibility. The increased sensi-
tivity could be attributed to the gas vortices created by the 3D
structure within the microfluidic channel, which results in a
longer residence time for gas molecules as affirmed by control
experiments and theoretical simulations. MXene materials
contribute greatly to improved detection sensitivity due to
their exceptional adsorption ability for VOCs. Multiplex
detection was made possible by the use of complementary
ligand switching (CLS) and visible SERS barcodes, thus fully
harnessing the multiplex detection potential of the SERS
technique. The multiplex detection of 2,6-dinitrotoluene
(DNT), indole, and benzaldehyde was achieved on the device
with an error rate of less than 9% and a detection limit as low
as 10 ppb (Figure 12). This eliminates the need to
compromise between the detection depth and the number of
sensors deployed. Importantly, each of these techniques can be
employed separately to further improve the detection rates.
Furthermore, the SERS-Vortexene chip can generate a
spectrum library for the identification of various VOCs and
their mixed forms by combining the SERS fingerprint spectrum
using MXene’s robust universal adsorption properties. In order
to facilitate the development of highly sensitive and versatile
gas sensors, researchers have proposed the deployment of a
SERS-Vortexene chip to increase the awareness of ultraflexible
MXene and SERS-microfluidic technology. Also, this techni-
que could be considered aligned with the Green Biomaterials
principles.86

5. CONCLUSION AND FUTURE PERSPECTIVE
The integration of MXene materials with microfluidics can
stand at the scientific innovation forefront, which can hold
tremendous potential across diverse fields. This perspective
explores the multifaceted synergy between MXenes and
microfluidics, highlighting their combined strengths in material
science, sensing, energy storage, and biomedical research. It is
crucial to acknowledge and address precise obstacles which
currently hinder the potential applications of the integrated
MXene microfluidics systems when we delve into the future.
Current challenges can be (i) overcoming microfluidics
manufacturability and commercialization hampers, (ii) increas-
ing the biocompatibility and biodegradability of MXene-based
compounds, (iii) MXene production scalability can be another
ordeal. To address these challenges, proposed approaches are
as follows: (a) encourage interdisciplinary cooperations

between industry and academia for bridging the gap academic
results, commercially viable and practical devices, (b)
investigation of scalable biocompatible fabrication methods
to ease the adoption of MXene microfluidic technique, (c)
based on the scientific fact, preparation of tailored MXene-
based compounds can be achieved through composite and
functionalized derivatives, and (d) the optimization of MXene
composition with other compounds is crucial for real time
applications which need multiplexing sensing systems. Looking
forward can illustrate that several key trends and opportunities
can emerge, including the following: (i) Advanced materials
development: Continued research on MXene synthesis and
modification techniques will undoubtedly yield new materials
with tailored properties, enabling even more versatile
applications within microfluidic systems. These advancements
may include MXene-based nanocomposites, hybrids, and
functionalized MXene derivatives, thus expanding the range
of possibilities for microfluidic devices. (ii) Enhanced sensing
capabilities: MXene-based sensors integrated into microfluidic
platforms hold the potential for ultrasensitive and selective
detection of various analytes. (iii) Energy and environmental
applications: MXene’s unique electrical and electrochemical
properties make it an ideal candidate for energy storage and
conversion systems. Microfluidic devices could facilitate the
development of more efficient and compact energy storage
devices, namely, microsupercapacitors, batteries, and fuel cells.
Furthermore, MXene-based membranes may find applications
in water purification and desalination within microfluidic
setups. (iv) Biomedical advancements: MXenes show promise
in drug delivery, biosensing, and tissue engineering. Future
perspectives in this domain may entail the development of
biocompatible MXene-based microfluidic systems that can
precisely control drug release, provide rapid and sensitive
diagnostics, and create tailored environments for cell culture
and tissue regeneration. Finally, as the MXene microfluidics
integration assures transformative progress, the path toward
success necessitates concerted actions for overcoming above-
mentioned issues. This study strived to focus on innovations
and practical examples to shed a light on the proposed path
and pave the way toward the technological landscape where
MXenes and microfluidics will collectively eradicate the
complex challenges.
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■ ABBREVIATIONS
MAX, M: transition metal, A: group 11−16 A-element, X:
carbon or nitrogen; MXene, “ene”: highlights 2D nature akin
to grapheme; MEMS, microelectromechanical systems; μPAD,
microfluidic paper-based analytical device; TMD, transition
metal dichalcogenides; Eb, energetic barrier; ΔE, reaction step
energy; CVD, chemical vapor deposition; DFT, density
functional theory; 2D, two-dimensional; OER, oxygen
evolution reaction; HER, hydrogen evolution reaction; IoT,
Internet of Things; LBG, laser-burned graphene; PDMS,
polydimethylsiloxane; PI, polyamide; MWCNT, multiwalled
carbon nanotubes; NFC, near field communication; ADC,
analog-to-digital converter; RE, reference electrode; WE,
working electrode; SVSS, standing voltage source; ECG,
electrocardiogram; AβO, Amyloid β protein oligomer; AD,
Alzheimer’s disease; UA, uric acid; MF, MXene framework;
MHMF, microchamber-hosted MF; e-nose, electronic nose;
VOC, volatile organic compound; POCT, point-of-care
testing; PDZn, Zn2+-anchored polydopamine; LIGIE, laser-
induced graphene interdigital electrode; DCD, diabetic
comorbid depression; LI, liver impairment; ML, machine
learning; SERS, surface-enhanced Raman spectroscopy; FSC,
fiber-shaped supercapacitor; MFF, MXene-based fiber fabric;
GQD, graphene quantum dot; PANI, polyaniline; ZIF-67,
zeolitic imidazolate framework-67; CLS, complementary ligand
switching
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(71) Ozdemir, I.; Kadioglu, Y.; Yüksel, Y.; Akıncı, D. C.; Aktürk, O.
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