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Lung cancer is the leading cause of cancer morbidity and mortality worldwide and early
diagnosis is crucial for the management and treatment of this disease. Non-invasive
means of determining tumour information is an appealing diagnostic approach for lung
cancers as often accessing and removing tumour tissue can be a limiting factor. In recent
years, liquid biopsies have been developed to explore potential circulating tumour
biomarkers which are considered reliable surrogates for understanding tumour biology
in a non-invasive manner. Most common components assessed in liquid biopsy include
circulating tumour cells (CTCs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA),
microRNA and exosomes. This review explores the clinical use of circulating tumour
biomarkers found in liquid biopsy for screening, early diagnosis and prognostication of
lung cancer patients.
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INTRODUCTION

Lung Cancer
Lung cancer is the leading cause of cancer related deaths and
accounted for over 2.1 million new cases and 1.8 million deaths
in 2018 (1). If the cancer is diagnosed in the early stages (i.e.,
Stage I – II), the five-year survival rate is estimated to be around
56% (2). However, only 16% of lung cancer cases are diagnosed
early, which causes the overall five-year survival rate of lung
cancer patients to be less than 20% with adverse clinical
outcomes (3, 4). Lung cancer is mainly categorized into two
histological groups: non-small cell carcinoma (NSCLC) and
small cell lung carcinoma (SCLC) (5). NSCLC is the most
prevalent lung cancer type that accounts for 80% to 85% of all
lung cancer cases and is further divided into three histological
subtypes of adenocarcinoma, squamous cell carcinoma, and large
cell (undifferentiated) carcinoma (6). Adenocarcinoma accounts
for 40% of all lung cancers and is frequently found in peripheral
bronchi (7, 8). Squamous cell carcinoma comprises 25%-30% of
all lung cancer cases which arises from the main bronchi and
disseminates into the carina. Large cell (undifferentiated)
carcinoma represents about 10% and may originate from
different part of the lung. SCLC accounts for 10-15% of all
lung cancers and it is the most aggressive type with the lowest
overall survival (OS) (5, 6).
LIQUID BIOPSY

Lung cancer patients often suffer from progression of their
disease with adverse clinical outcomes, complications and
recurrence (9). Therefore, early diagnosis is vital for effective
disease management and preventing the advancement of cancer.
Frontiers in Oncology | www.frontiersin.org 2
However, one of the main challenges for managing and treating
lung cancer patients is the lack of sensitive early diagnostic
methods (10). To date, low-dose spiral computed tomography
(LDCT) is the most commonly used approach for lung cancer
screening with more than four times higher sensitivity compared
to X-ray imaging (3, 11, 12). However, high false-positive results
in the early stages of lung cancers and radiation exposure often
limits the usage of LDCT (10).

Tumour biopsy is the gold standard for lung cancer diagnosis
due to the potential of investigating targeted biomarkers
including carcinoembryonic antigen (CEA), fragments of
cytokeratin ‐19 (CYFRA21‐1), squamous cell carcinoma
antigen (SCC) and neuron‐specific enolase (NSE) (13, 14).
However, tumour biopsy is an invasive approach, requiring
specialist medical expertise and cannot be routinely performed
outside of a hospital setting. Single site biopsy may have a
sampling bias by not being representative of the whole tumour
(15). Moreover, tumour biopsies represent a single time point
snapshot of the tumour, where therapy-induced changes cannot
be determined over the course of treatment. Therefore,
alternative, more dynamic biomarkers which can be assessed
serially over the course of therapy are desirable (14).

Liquid biopsy have emerged as a promising tool to detect
tumour biomarkers (Figure 1) in body fluids in a non-invasive
manner. They have shown to play a crucial role in lung cancer
screening, early diagnosis, monitoring and determining patient
prognosis (16). The minimal invasiveness, ease of use and ability
to have repeat measurements over time make it a useful
companion diagnostic tool. To date, liquid biopsies has been
developed as a novel diagnostic approach to explore potential
circulating tumour biomarkers and is considered as a reliable way
to understand dynamically changing tumour biology under the
stressors of treatment. Liquid biopsy biomarkers include cell-free
DNA (cfDNA), circulating tumour DNA (ctDNA), microRNA
GRAPHICAL ABSTRACT | The identification of multi-marker analytes in liquid biopsy samples enables a personalised medicine approach to the management of
lung cancer.
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(miRNA), exosomes and circulating tumour cells (CTCs) (3, 12,
17–19). This review provides an overview of these circulating
tumour biomarkers and their clinical significance in screening,
early diagnosis and prognostication of lung cancer (Figure 2).
Frontiers in Oncology | www.frontiersin.org 3
cfDNA and ctDNA
Cell free DNA (cfDNA) is derived from dividing and apoptotic
cells as a result of the normal physiological process of tissue
remodeling (21–23). In healthy subjects, the amount of cfDNA is
FIGURE 1 | The process of cancer metastasis. Metastasis occurs via the vascular or lymph circulatory systems, where cancer cells from the primary tumour, intravasate
into the blood/lymphatics systems and travel through the body, and extravasate at local/distant sites/organs. Adapted from “Overview of Metastatic Cascade”, by
BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.
FIGURE 2 | Multi-marker analytes in a liquid biopsy sample: CTCs, cfDNA and exosomes can be analysed at different time points during clinical progression/
treatment. Adapted from Ref (20) and created with BioRender.com.
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quite low and it has been estimated as 5–10 ng/mL in body
fluids (24). The half-life of cfDNA is approximately 2 hours
(25). The proportion of cell free DNA derived from tumour
cells is known as ctDNA (18). The concentration of ctDNA in
plasma varies from 0.01% to 90% of total cfDNA (25).
The amount of ctDNA present in plasma correlates with the
tumour burden, progression free survival (PFS) and OS (10),
which is a useful biomarker to monitor NSCLC patients in
different stages (26). A study conducted by Newman et al. has
been found that a 100% detection rate of ctDNA in stage II–IV
NCSLC patients and 50% in early-stage patients (26). Owing to
the short half-life of ctDNA, treatment efficacy of patients can be
rapidly detected, earlier than radiological changes (25). On the
other hand, in order to detect ctDNA in the peripheral
circulation, blood samples should be collected within a certain
time period to avoid degradation (24). ctDNA can identify
specific molecular changes present in the original tumour.
These include mutations in oncogenes/tumour suppressor
genes and gene amplifications or epigenetic changes (19).
Therefore, cfDNA/ctDNA has been used as a prognostic
marker for the diagnosis of different types of cancers including
lung cancer (17, 27, 28). Furthermore, ctDNA provides a
molecular picture of the residual disease which helps in decision
making for the commencement of adjuvant chemotherapy after
the surgery (29). The concentration of cfDNA is found to be
higher in early stage NSCLC patients, recurrent and advanced
stage NSCLC patients compared to healthy subjects (26, 29). A
study by Pohomaryova et al., reported that the plasma
concentration of cfDNA in lung cancer patients is eight times
higher than normal healthy adults (30). Several studies have been
reported the presence of high cfDNA concentrations has a
significant association with the worse clinical outcome (31–34).
Furthermore, cfDNA plays an important role for identifying
blood tumour mutational burden (bTMB) in NSCLC, indicating
the number of somatic mutations in the genome coding regions
(35). It has been found that sensitivity and specificity of bTMB
assay were 93.9%, 93.9% and 100.0%, compared to tissue
TMB (36).

cfDNAmutation analysis is also important to identify specific
mutations and molecular targets for personalized therapies (37).
This can be beneficial to select patients for immunotherapy and
pursue a clinically meaningful improvement in terms of survival
(38, 39). The United States Food and Drug Administration (U.S.
FDA) approved ctDNA as the first liquid biopsy test for the
detection of NSCLC patients with EGFR mutations who were
suitable for personalized therapy (Roche Cobas EGFR mutation
test v2) (40). This assay can detect multiple mutations in exons
18, 19, 20 and 21 in NSCLC including L858R, T790M, G719X,
S7681, and L861Q (41). Using ctDNA, 62.5% of patients were
identified with EGFR mutations (exon 19 deletion, exon 20 T790
M insertion and exon 21 L858R mutation) at the baseline, while
the rate of EGFR mutation positivity was higher among patients
with metastatic disease (42). ctDNA, as a specific tumour marker,
has a high specificity of 80-95% for the detection of EGFR
mutations, which can inform on the use of tyrosine kinase
targeted therapies. However, the sensitivity of this approach is
comparatively lower – about 60-85%, which cannot be used to
Frontiers in Oncology | www.frontiersin.org 4
ensure the EGFR mutation does not exist in the patient. In
addition to detection of EGFR mutation, ALK rearrangements
have been assessed in ctDNA of lung cancer patients (43–45).
ALK is a membrane-bound tyrosine kinase receptor encoded by
the ALK gene (46, 47) and rearrangement of ALK can be seen in
2-7% of NSCLC patients. Hence, ALK rearrangement has
emerged as the second most studied targetable mutation in
order to develop a novel treatment approach to lung cancer (48).

In addition to single-gene assays, higher through-put NGS
multi-gene readout assays have been developed to identify
single-nucleotide variants (SNVs), copy number alterations
(CNAs), inserts/deletions and or fusions. These assays include
the FoundationOne Liquid CDx, Guardant 360 CDx, MSK-
ACCESS, OncoDNA and Archer Reveal. These assays have the
advantage of broad genotyping and utility in clinical trials (49).
The blood TMB (bTMB) assays have shown concordance with
the tumour TMB assays in advanced stage NSCLC, in particular
for predicting clinical outcomes to immunotherapy (50, 51).

Usually, at the time of sample collection, tumour-derived
DNA is found highly fragmented and mixed with non-tumour
DNA/cfDNA. Separation of ctDNA from cfDNA can be pursued
using ultrasensitive analytical assays (52). Several testing
approaches have been identified; including emulsions, beads,
amplification, magnetics (BEAMing), droplet digital PCR
(ddPCR) and next generation sequencing (NGS), which can
detect down to a few copies of ctDNA (53–55). In contrast, the
low amount of ctDNA in plasma has been challenging the
clinical applicability of this technique. Therefore, evaluation of
ctDNA in other body fluids than plasma may potentially provide
a solution to this. The concentration of cfDNA in body fluids is
higher near the proximal tumour sites (37). It is worth
mentioning that the current guidelines emphasize plasma as a
preferred specimen than serum for the detection of ctDNA, as
leukocyte lysis takes place during clotting which thereby leads to
high contamination rate of germinal DNA than in plasma (56).
Furthermore, the specimen should be processed within 6 hours
of collection in order to prevent release of DNA from normal
blood cell lysis and leukocyte stabilization reagents would be
useful in these circumstances (57).

Exosomes
Exosomes are small extracellular vesicles derived by endocytosis,
with 40–100 nm in size (58), which can be found in all the body
fluids and capable of transporting DNA, mRNAs, noncoding
miRNAs, proteins and lipids (59). It consists of a lipid bilayer
that prevents degradation by enzymes such as ribonuclease and
high pH conditions. Hence, exosomes play an important role in
cell mediated communication in normal healthy cells and disease
cells including tumour cells (60). All cell types, including normal,
disease or tumour cells can release exosomes into the
extracellular space (61). Recent studies suggest a higher
number of exosomes in patients with cancer than in healthy
adults (62, 63). There is emerging evidence that exosomes have a
crucial role in carcinogenesis, cancer progression and metastasis
of several tumours, including NSCLC (14).

Exosomes derived from tumour cells can promote
carcinogenesis by transferring oncogenic factors and thereby
January 2022 | Volume 11 | Article 801269
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induce malignant transformation (64). Acquiring the oncogenic
factors from by non-cancerous cells leads to change of cellular
behaviour and share comparable characteristics that the tumour
poses (65). Tumour derived exosomes also have the potential of
influencing epithelial-mesenchymal transition (EMT) and
facilitate metastasis by transferring migratory and metastatic
capacity to the non-cancerous cells (66). Moreover, these
extracellular vesicles cause the expression of vimentin in
normal cells, stimulating EMT and increasing the metastasis
ability. This can further facilitate neoangiogenesis by releasing
proteins such as fibroblast growth factor (FGF), vascular
endothelial growth factor (VEGF), IL-6, and IL-8, and
stimulating vascular endothelial cells via miRNAs (67, 68).

The analysis of nucleic acids in exosomes has shown to be a
more reliable and sensitive mutation detection approach than
using cfDNA/ctDNA. Thakur et al. showed tumour-derived
exosomes carry double-stranded DNA which represents the
whole genome and the mutation profile of the primary tumour
cells (69). Exosomes hold great promise as biomarkers for the
early diagnosis and treatment via analysis of nucleic acids and
other markers to find clues on primary tumour and metastasis
condition of patients. Different exosomal proteins and miRNA
have been currently employed for the diagnostic and prognostic
utility. Some surface proteins offer promising potential as
tumour markers including CD91, CD317 and EGFR (70).

Exosomal microRNA-96 (miRNA-96) fosters lung cancer
progression by suppressing the activity of Lim domain 7
(LMO7) protein. LMO7 is a fibrous actin-binding protein
functions in the formation and maintenance of actin
cytoskeleton. In lung cancers, it functions as a tumour
suppressor molecule while a shortage of LMO7 confers a
genetic predisposition to lung cancer (67). Studies have been
documented that the amount of exosomal miRNA is different
between healthy individuals and lung cancer patients at different
stages (71, 72). Therefore, exosomal miRNA is imperative as a
promising and effective noninvasive candidate biomarker for
early diagnosis, tumour profiling and enabling a timely treatment
plan in NSCLC (10).

It has been found that EGFR protein can be transferred from
tumour cells to non-cancerous cells via exosomes which leading
to downregulation of the VEGF pathway (73). Similar to cfDNA,
exosomal RNA could be utilized to detect EGFR mutations. It is
worth mentioning that exosomal RNA has been found to be
more efficient in analyzing EGFR mutations than cfDNA (74).

Although exosomes have provided prospective clinical
evidence on cancer, still several constraints limit their clinical
utility. One of the major drawbacks is difficulty in purification
due to its’ smaller size. Further, few drawbacks are associated
with the difficulty to adopt exosome isolation techniques in
clinical environment. In this context, several isolation
techniques have been employed based on the physical,
chemical and biological properties of exosomes (75). Physical
methods include ultracentrifugation, ultrafiltration, density
gradient separation and size exclusion chromatography (75).
All these aforementioned methods are based on the molecular
size and density of the exosomes. In the ultracentrifugation,
Frontiers in Oncology | www.frontiersin.org 5
according to the density, blood and other components are
separated with different centrifugal speeds and exosomes are
separated in the final ultracentrifugation step. Ultrafiltration is
another physical method that utilizes the exosome size for
separation of these extracellular vesicles (59). Furthermore,
Polymeric-based precipitation is one of the promising
techniques that used the chemical properties of exosomes by
using beads coated with specific antibodies coated.

CTCs
CTCs were first described by an Australian physician, Thomas
Ashworth in 1869, where he observed cells similar to the primary
tumour were found in the blood of a patient with metastatic
disease. Accordingly, metastasis is thought to be facilitated by
metastatic precursor cells, known as CTCs, which are tumour
cells that detach from a tumour into the vasculature (76). They
are extremely rare and approximately 1-10 CTCs can be present
per milliliter of whole blood (77). Emerging evidence has
demonstrated that the presence of CTCs in the vascular system
associate with worse clinical outcomes in terms of OS of cancers
(5). It has been shown that patients with NSCLC have ten times
higher concentration of CTCs in their blood circulation than in
other cancer patients (78–80).

CTCs are considered to play a pivotal role in metastasis of
cancer and during which they go through a process called EMT
(81, 82). EMT is a complex biological process that results in the
gradual lowering of epithelial features of the tumour cells and
obtains mesenchymal properties to acquire migratory and
invasive metastatic characteristics (83). In this process, tumour
cells enter the circulation and reach a distant site where a
metastatic deposit is initiated. Here, CTCs regain epithelial
characteristics allowing further proliferation and formation of
metastases deposits at the distant site (Figure 1) (84). A sensitive
and specific isolation method is therefore imperative to provide
sufficient and purified CTCs to analyse (85, 86). Since CTCs are
extremely rare, their isolation is greatly constrained by
technological implications (87, 88). With the advancement of
novel technologies for CTC enrichment, in particular that of
microfluidics, CTC capture is becoming increasingly efficient.
The current CTC enrichment methods are based either on the
biological or physical properties of CTCs. The CellSearch
(Menarini Silicon Biosystems) platform is the only FDA-
approved CTC enumeration method which target epithelial cell
adhesion molecule (EpCAM), a transmembrane glycoprotein
involved in cell to cell adhesion (89). This platform is
approved for breast, colon and prostate cancers. However, this
platform has a number of limitations, including that is only
captured epithelial CTCs and does not capture mesenchymal
shifted CTCs with low or absent EpCAM expression (90, 91).
Furthermore, isolation and enrichment of CTCs have been
extremely challenging in NSCLC due to the downregulation of
the epithelial tumour markers during EMT, which consequently
masks the true number of CTCs (10). CTCs often have partial-
EMT or hybrid states, which can downregulated markers such as
EpCAM (92–94). This is further confounded by the presence of
CTC clusters or microemboli which have a higher metastatic
January 2022 | Volume 11 | Article 801269
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capacity compared to single CTCs, including immune evasion
strategies by the inclusion of leukocytes (83, 95–97).

To tackle these drawbacks, label-free CTC isolation
technologies have been established to isolate CTCs based on
size, density and deformability (87, 98). Still, considerable
constraints of label-free technologies are inevitable and the
usage is limited due to their throughput (99). To overcome
this, recently microfluidic technologies have been developed
including electrophoresis, hydrodynamic and cross-flow
filtration, micropore and micropost trapping, deterministic
lateral displacement and inertial focusing systems to capture
CTCs (90, 99–103). This has added values through effective cell
sorting without need for purification, high system throughputs
and ability to analyze functions of CTCs in vitro (90, 99,
104–106).

Isolated CTCs can be analysed through different approaches
including molecular and proteomic studies. For instance,
captured CTCs can be used for EGFR mutation analysis which
will provide a better understanding of the tumour genetic profile
similar to ctDNA (10). Studies emphasized that detection of
EGFR mutations in CTC could assist in determining prospective
therapeutic decisions which ultimately would lead to the
advancement of precision medicine and personalized oncology
(5, 107). Other than EGFR mutations, programmed death
ligand-1 (PD-L1) expression on CTC has also been studied;
however, authors have not been established a clear relationship
between its expression and cancer progression and prognosis in
patients with NSCLC (108, 109).

The isolation of a sufficient amount of CTCs in the blood of
NSCLC patients and identify its various biomarkers can aid in
early detection of the NSCLC and will also provide real-time
monitoring of cancer progression, treatment efficacy
and prognosis.

Circulating miRNAs
miRNAs are a type of gene expression regulator that works at the
post-translational level with a multi-protein complex known as
the RNA-induced silencing complex (miRISC), exerting their
function at the 3’-untranslated region (3’UTR) of target
complementary messenger RNA (mRNA) sequences (110,
111). miRNAs have been discovered to be single-stranded
RNA molecules with a length of 19 to 22 nucleotides (14, 112).
It has been well established that each miRNA can regulate and
act as a target for multiple mRNAs and that each mRNA,
resulting in a cascade of gene regulation (113, 114). Evidence
suggests that any dysregulation of miRNAs could have an impact
on a variety of diseases, most notably cancer (115). In the context
of cancer, miRNA dysregulation has been linked to tumor
initiation, growth, and progression, with evidence pointing to
miRNAs acting as tumor suppressors and oncogenes (115). In
addition, it was found that miRNAs are packed into extracellular
vesicles before being released into the extracellular space. These
vesicles could be exosome and microvesicles (116–118). Several
studies have been conducted to explore the role and application
of miRNAs in cancer (75, 119–121). The serum or plasma level of
miRNAs can serve as a predictive marker in cancer patients,
indicating signs of the disease stage (75, 119). miRNAs are
Frontiers in Oncology | www.frontiersin.org 6
released into the circulation via protein-miRNA complexes,
exosomes, tumor-educated platelets (TEP), and apoptotic
bodies (122, 123). Accordingly, evidence suggests that cancer
therapeutic approaches such as chemotherapy and radiotherapy
may affect circulating miRNA levels, implying that miRNAs can
serve as biomarkers for response or resistance to therapy (120,
121, 124, 125). In lung cancer, miRNAs have been found to
distinguish healthy individuals from cancer patients (126–128).
miRNAs may also serve as biomarkers of therapeutic success in
NSCLC patients, allowing for better patient management
decisions (129). As a result, studies on lung cancer patients
revealed that, when compared to LDCT, miRNAs had
significantly lower false-positive results when it came to
detecting lung cancer patients in their early stages (129).
Furthermore, a meta-analysis study from 65 studies (6919
patients with lung cancer and 7064 healthy volunteers),
discovered a panel of four miRNAs, including miR-21-5p,
miR-126-3p, miR-155-5p, and miR-223-3p, which can be used
as a potential biomarker in lung cancer screening (130).
Moreover, a different study conducted on early NSCLC
patients showed that a number of miRNAs were differentially
regulated between short-term survivors and long-term survivors.
These miRNAs, which included miR-1, miR-30d, miR-486, and
miR-499, were also linked to the OS (127). In line with these
findings, Li et al. studied miR-486 and miR-150 on plasma
samples from lung cancer patients to explore their early
diagnostic value (131). As a result, these miRNAs were
discovered to have greater than 80% specificity and sensitivity
in discriminating healthy individuals from lung cancer patients
(131). Another study on patients with metastatic lung cancer
discovered that miR-18a, miR-28-3p, miR-191, miR-145, and
miR-328 were associated with 3-year survival (132). In studies on
NSCLC tumors, researchers discovered six serum miRNAs from
patients that had significantly different expressions when
compared to healthy people. Accordingly, miR-15b-5p was
found to be overexpressed, while miR-19-3p, miR-92-3p, miR-
16-5p, miR-17b-5p, and miR-20a-5p were found to have
downregulation (133). Among these miRNAs, miR-16-5p,
miR-15b-5p, and miR-20a-5p had the highest sensitivity and
specificity values (133). However, despite these promising
findings, there are some drawbacks to using miRNAs as
diagnostic biomarkers, which are listed in Table 1.

Tumor Educated Platelets
Platelets are enucleated cells that participate in coagulation.
Platelet activation has also been found in inflammatory
diseases like eczema and asthma (140). Evidence suggests that
platelets may play an important role in tumorigenesis by helping
tumor evasion, angiogenesis, and metastasis (141, 142).
Activated platelets secrete a-granules to release transforming
growth factor-beta (TGFb) and adenosine triphosphate (ATP),
leading to epithelial mesenchymal transition (EMT) and
metastasis (143). On the other hand, tumour cells have been
found to induce thrombocytosis by producing growth factors
and cytokines such as granulocyte colony-stimulating factor (G-
CSF), granulocyte-macrophage colony-stimulating factor (GM-
CSF), interleukin (IL)-1 and IL-6 (144). Given this information,
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the interaction between tumour, tumour microenvironment
(TME), and platelets account for tumor-educated platelets
(TEPs) (145, 146). Accordingly, numerous studies explored the
use of TEPs as a liquid biopsy in cancer initiation and
progression (147–150). It has been discovered that growth
factors released and produced by platelets and tumor cells,
such as vascular endothelial growth factor (VEGF), contribute
to changes in mRNA expression within platelets, resulting in a
specific spliced mRNA signature (151, 152). The mRNA
signature could be used as a biomarker to distinguish cancer
patients from healthy individuals. According to multiple studies,
patients with cancer onset and progression have a highly
dynamic mRNA repertoire (138, 153). Therefore, analyzing
mRNA profiles may be useful in detecting primary tumors,
metastasis, and cancer staging (45, 138). A study that
compared patients with localized and metastatic tumors to
healthy people discovered that platelet mRNA profiles could
distinguish cancer cases from healthy ones with 96% accuracy,
97% sensitivity, and 94% specificity (153). In the context of lung
cancer, Geraci and colleagues investigated platelet mRNA
profiles in the context of lung cancer using a lung cancer
model. As a result, they discovered distinct platelet mRNA
gene expression between metastatic and control groups (154).
Furthermore, research has revealed that some patients with lung
adenocarcinoma have ALK rearrangement, resulting in the
EML4–ALK fusion gene product (155, 156). Using reverse
transcription-polymerase chain reaction (RT-PCR), Nelson
et al. examined blood platelets from 77 NSCLC patients and
Frontiers in Oncology | www.frontiersin.org 7
found 38 cases had an EML4-ALK-rearrangement in platelets
with 65% sensitivity and 100% specificity (157). In addition, it
was reported that the EML4-ALK rearrangement in platelets had
a correlation with PFS and OS in patients who received
crizotinib. Accordingly, patients with EML4-ALK+platelets had
3.7 month PFS, whereas patients with EML4-ALK- platelets had
16 month PFS (157). When compared to patients with non-
cancerous inflammatory diseases, patients with cancer have a
hyperactive state of TEPs, according to functional analysis (158).
In addition, using RNA sequencing, the platelet RNAs were
investigated in patients with early stage NSCLC and healthy
individuals. It was demonstrated that integrin alpha-IIb
(ITGA2B) was expressed more in NSCLC patients than healthy
individuals (159). As a result of their findings, the researchers
concluded that TEP ITGA2B could be a promising marker for
detecting patients with early-stage NSCLC (159).
DISCUSSION

Liquid biopsy has shown promise for the early diagnosis and
management of lung cancer due to its high sensitivity, specificity,
non-invasive sampling and low-risk profile. cfDNA/ctDNA,
CTCs, miRNAs and exosomes are considered as potentially
actionable biomarkers which are used in liquid biopsy.
However, robust characterization of each marker is needed for
the comprehensive understanding of their role in NSCLC disease
TABLE 1 | Comparison of different liquid biopsy markers including cfDNA/ctDNA, exosome, CTC, cmiRNA and TEP.

Marker Sample type Strength Weakness Clinical application in oncology Ref.

cfDNA/
ctDNA

• Serum
• Plasma
• CSF
• Ascites
• Pleural effusion

• Reflective of tumor molecular
alterations/mutations

• Stable up to 2 days in blood
samples

• Reflective of tumor heterogeneity
• Highly sensitive assays (NGS,

PCR)

• Contamination of germinal cfDNA
• Cannot reflect every gene mutation
• Low amount in plasma
• Undetectable in many patients

with early-stage cancer
• Less stable than non-tumor DNA

• Elevated in cancer patients compared to
healthy individuals

• Increases with tumor size and stage

(14, 49,
134,
135)

Exosomes • Nearly all body
fluids

• Stable source of tumor
genetic material (DNA, RNA,
protein, miRNA)

• Commercial kits available

• required standardization for extraction
and detection

• Unreliable isolation procedures

• Elevated in cancer patients compared to
healthy individuals

• Exosome size positively correlates with
unfavorable outcomes

(5, 110,
136)

CTC • Peripheral
blood

• Assessment of tumor markers
(PD-L1) during treatment

• Demonstration of signal co-
localization

• Cell morphology and functional
studies

• Not predictive of therapeutic benefit
in metastatic setting

• Undetectable in most patients
with early-stage cancer

• Rare to capture in the
bloodstream

• Predictive of early relapse after primary
treatment

• CTC number correlates with progression-
free survival and overall survival

(109,
122,
137)

cmiRNA • Serum
• Plasma

• Different profile among
early-stage cancer patients

• Distinguishable between cancer
patients and healthy individuals

• Loss of epithelial specific markers
during epithelial mesenchymal
transition (EMT)

• High variability
• Lack of standardization
• Unspecific for a cancer type

• cmi-RNA expression correlates with tumor
development, progression and metastasis

(14,
110,
122)

TEP • Peripheral
blood

• TEP-RNA is reflective of
tumor transcriptome

• Abundant
• Dynamic mRNA repertoire

because of short life-span

• Reproducibility
• Lack of validated assay

• Distinguishable between healthy individuals
and cancer patients

• Distinguishable between patients with
early-stage cancer and patients with
advanced-stage cancer

(138,
139)
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The sample type, strength, weakness and clinical applications of each marker is discussed.
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progression, prognostication and determining a tailored
treatment regimen. It is clear that certain liquid biopsy
analytes would be useful over the course of disease
progression. For example, ctDNA and exosomes may be
informative early in disease onset, and could be used to
identify specific actionable mutations/and early stage disease
which cannot be determined using LDCT. Whereas CTCs may
be used to identify the risk of developing metastatic disease, and
the types of clones which may develop treatment resistance
(Figure 3). ctDNA has also shown utility over the course of
therapy where the variant allele frequencies can be monitored
over time/therapy to determine increases or decreases of tumour
specific mutations in response to treatment. ctDNA has been the
most studied marker in the field of lung cancer with clinical
utility for a number of gene mutations. The detection of tumour
specific mutations post therapy may also present a window of
therapeutic opportunity where the patient has minimal residual
disease (MRD), prior to clinically detectable disease progression
with radiological evidence. Whilst larger multi-marker NGS
Frontiers in Oncology | www.frontiersin.org 8
panels have come onto the marker, cross comparisons of blood
and tumour studies will be warranted to determine their utility
for targeted therapies. Moreover, large prospective clinical trials
are needed to provide a better understanding of the clinical utility
of liquid biopsy assays.
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