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Background: Tumour tissue-based information is limited. Liquid biopsy can provide valuable real-time 
information through circulating tumour cells (CTCs). Profiling and expanding CTCs may provide avenues 
to study transient metastatic disease.
Methods: Seventy non-small cell lung cancer (NSCLC) patients were recruited. CTCs were enriched 
using the spiral microfluidic chip and a RosetteSep™ using bloods from NSCLC patients. CTC cultures 
were carried out using the Clevers media under hypoxic conditions. CTCs were characterized using 
immunofluorescence and mutation-specific antibodies for samples with known mutation profiles. Exome 
sequencing was used to characterized CTC cultures.
Results: CTCs (>2 cells) were detected in 38/70 (54.3%) of patients ranging from 0 to 385 CTCs per 
7.5 mL blood. In 4/5 patients where primary tumours harboured an EGFR exon 19 deletion, this EGFR 
mutation was also captured in CTCs. ALK translocation was confirmed on CTCs from a patient harbouring 
an ALK-rearrangement in the primary tumour. Short term CTC cultures were successfully generated in 
9/70 NSCLC patients. Whole exome sequencing (WES) confirmed the presence of somatic mutations in the 
CTC cultures with mutational signatures consistent with NSCLC.
Conclusions: We were able to detect CTCs in >50% of NSCLC patients. NSCLC patients with >2 CTCs 
had a poor prognosis. The short-term CTC culture success rate was 12.9%. Further optimization of this 
culture methodology may provide a means by which to expand CTCs derived from NSCLC patient’s bloods. 
CTC cultures allow for expansion of cells to a critical mass, allowing for functional characterization of CTCs 
with the goal of drug sensitivity testing and the creation of CTC cell lines.
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Introduction

Lung cancer (LC) is the leading cause of cancer-related 
deaths amongst men and women worldwide (1). In 2018, 
the incidence of LC was estimated to be 1.8 million new 
cases, accounting for 12.9% of all new cancers diagnosed 
globally (2,3). The 5-year survival rate is 18% for all stages 
of LC, with poor outcomes, largely due to late diagnosis, 
progression of disease and resistance to therapy (1,4,5). The 
majority of patients with LC present with locally advanced 
or metastatic disease with the annual mortality rate being 
higher than colon, breast and prostate cancers combined 
(4-6). Therefore, it is imperative that novel biomarkers are 
identified to assist in clinical decision making to improve 
outcomes for patients.

Metastasis is a highly complex process and is the main 
cause of cancer related deaths (7). Circulating tumour 
cells (CTCs) play a pivotal role in metastasis (8). CTCs 
disseminate into the bloodstream as single CTCs, clusters 
or as circulating tumour microemboli (CTM) (9-14). 
Cellular aggregates termed CTM include platelets, stromal 
cells and heamatopoietic cells which ‘protect’ tumour 
cells from undergoing apoptosis or being attacked by the 
immune system (12,15). CTC clusters have shown to have 
a higher metastatic capacity compared to single CTCs 
(9,16). Whilst CTCs were first described over a century 
ago, it is now that they have gained attention due to the 
rapid advancement of technologies to enrich for these rare 
cells from a large background of hematopoetic cells (17). 
Clinical trials and meta-analyses’ have demonstrated that 
the presence of CTCs in the blood correlates with poor 
overall survival in patients with metastatic prostate, breast, 
lung and colon cancers (18-23). Analysis of CTCs as a 
liquid biopsy has shown promise for the serial assessment 
of tumour evolution during disease progression, real-time 
monitoring of recurrences or relapses, as well as providing a 
snapshot of the tumour heterogeneity using a simple blood 
draw from a cancer patient (24,25).

Currently, therapeutic decisions rely on tumour biopsies, 
which are invasive and especially difficult to access due to 
the anatomical location of the tumour, resulting in limited 
tumour material. In order to make clinical decisions based 
on the tumour tissue activity, there is need for serial biopsies 
to evaluate the dynamics changes of tumour activities, 
which is extremely invasive and, in most cases, unattainable. 
In addition, when a cancer patient has undergone surgery, 

there is no availability of tumour tissue post resection. It is 
important to also note that the recurrence rates for NSCLC 
are between 30% to 50% and therefore, non-invasive 
means of assessing the disease are needed (26). Liquid 
biopsies have also shown great promise in detecting and 
characterizing minimal residual disease (MRD), leading to 
recurrences or relapse (27).

Studies have sought to expand CTCs outside a patients’ 
body for in depth characterization of metastasis initiating 
cells as well as to understand the biology of metastatic 
disease (28). Once expanded, ex vivo cultures also present 
the possibility of pre-clinical testing to determine drug 
susceptibility. CTC enrichment techniques have also 
impacted on the development of CTC culture models 
and therefore optimal culture conditions are yet to be 
established (28). The immortalization of stable long term 
cell lines hold vital clues when developing personalized 
treatments for cancer as well as testing of therapeutic 
effectiveness using drug screening (29). This approach 
could better assist in determining therapeutic regimen 
that is beneficial for patients, and therefore drive towards 
personalized oncology (30).

There is a rising interest in genomic profiling of CTCs 
in order to monitor the tumour’s response to therapy over 
the course of treatment, as CTCs may signify intact and 
functional cancer cells circulating in the peripheral blood 
with the capacity to metastasise and initiate secondary 
tumour growth (31). Previous studies have shown clinical 
value in sequencing individual CTCs to identify driver 
mutations and possible drug targets to prevent tumour 
resistance (32-35). In the current study, the spiral 
microfluidic chip technology was utilised to isolate CTCs 
in a cohort of NSCLC patients. Using this technology 
CTCs are separated using hydrodynamic forces for size-
based sorting (36). In addition, isolated CTCs were assessed 
for clinically relevant markers EGFR exon 19 deletion 
and ALK translocations. CTCs were detected in 54.3% 
in bloods from patients with NSCLC. We found that 
NSCLC patients with >2 CTCs at diagnosis showed a poor 
outcome compared with the patients with <2 CTC cells 
in their bloods. In parallel, RosetteSep™ (antibody-based 
depletion) was used to isolate and expand CTCs. We were 
able to maintain CTC in culture (n=9) in most cases for up 
to 40 days. One CTC culture was confirmed by WES to be 
of NSCLC origin, providing evidence that the CTCs are 
derived from primary tumour tissue.
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Methods

Patients and samples

Ethics approval was obtained from the Metro South Health 
District Human Research Ethics Committee in accordance 
with the National Health and Medical Research Council’s 
guidelines (HREC/11/QPAH/331) to collect blood samples 
from the Princess Alexandra Hospital (PAH). All methods 
in this study were performed in accordance with these 
ethical guidelines and regulations and with the Helsinki 
Declaration (as revised in 2013). This study has Queensland 
University of Technology ethics approval (1100001420). 
Following written informed consent, 15–20 mL of blood 
samples were collected from 70 NSCLC patients. The 
patient demographic and clinicopathological findings are 
presented in Table 1.

CTC enrichment and detection

The workflow that we have adopted is shown in Figure 1.

RosetteSep and ex vivo CTC culture

Patients whole blood (10 mL) was collected in heparin tubes 
(BD-Plymouth, UK) and incubated with RosetteSepTM 
(Human CD45 depletion cocktail, Stemcell Technologies™, 
Vancouver, Canada) at 50 μL/mL of whole blood for  
20 minutes at room temperature. After incubation, cellular 
separation was achieved in SepMate™-50 mL tubes 
containing Lymphoprep™ (Stemcell Technologies™, 
Vancouver, Canada) density gradient medium and 
centrifugation at 1,200 g for 10 minutes. The enriched 
cellular suspension was resuspended in Clevers media 
and seeded in 96 well standard microplates (Greiner Bio-
One, Austria) and 16 well Chamber Slide™ (Lab-Tek®, 
Australia).

Preparation of Clevers media

Clevers media is comprised of Advanced DMEM/F12 
with the following additives: 50 ng/mL EGF (Sigma), 
5% v/v R-spondin 1, 10% v/v Noggin, 10 ng/mL 
FGF10 (Peprotech), 1 ng/mL FGF2 (Peprotech), 10 nM 
Nicotinamide (Acros), 0.5 μM A83-01 (Tocris), 10 μM  
SB202190 (Sigma Aldrich), 10 μM Y-27632 (Selleck 
Chemical), 1X B27 Additive (Invitrogen), 1.25 mM 
N-Acetyl-L-cysteine (Sigma-Aldrich), 2 nM Glutamax 

Table 1 Clinicopathological patient data for the NSCLC patient 
cohort

Variables N

Total 70

Gender

Male 42 (60%)

Female 28 (40%)

Age, y

<60 17 (24.3%)

>60 53 (75.7%)

Age range (years) 36–89

Tumour type

NSCLC adenocarcinoma 57 (81.5%)

NSCLC squamous cell carcinoma 12 (17.1%)

NSCLC adenosquamous carcinoma 1 (1.4%)

Tumour stage

I 1 (1.4%)

II 2 (2.9%)

III 26 (37.2%)

IV 40 (57.1%)

Unknown tumour stage 1 (1.4)

Mutation status (tumour)

EGFR wild type 2 (2.9%)

EGFR mutation 10 (14.3%)

ALK wild type 1 (1.4%)

ALK translocation 1 (1.4%)

KRAS mutant 11 (15.7%)

BRAF mutant 2 (2.9%)

Treatment prior to consent 40

Treatment naive 30

CTC findings

CTC >2 (pCK+DAPI+CD45−) 38/70 (54.3%)

CTC <2 (CD45+DAPI+) 32/70 (45.7%)

CTC cluster count (C5+DAPI+) 16/70 (22.9%)

# Patients with EGFR+ CTCs 4/5 (80%)

Successful ex vivo culture 9/70 (12.9%)

CTC >2 includes single CTCs and CTC clusters. CTC, circulating 
tumour cell; NSCLC, non-small cell lung cancer.
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(Invitrogen), 10 mM HEPES (Sigma Aldrich), 1:100 v/v  
Primocin (Invitrogen), 10% Foetal Bovine Serum as 
previously described (37). The enriched cells were cultured 
in Clevers media under hypoxic conditions (1–2% O2).

Microfluidic spiral chip

Isolation of CTCs using spiral microfluidic technology 
was performed as previously described (14,36). In brief, 
whole blood (10 mL) was collected in K2EDTA tubes (BD-
Plymouth, UK), red blood cell lysed in 1:3 dilution (Astral 
Scientific, Australia), and run through a spiral chip using a 
syringe pump at 1.7 mL/min. The resulting CTC output 
was collected and spun down at 300 g for 5 min.

Characterization of CTCs

Spiral chip enriched samples were cyto-centrifuged 
onto  g l a s s  s l ide s  and  CTCs  were  ident i f i ed  by 
immunocytochemistry (ICC). Cells were fixed with 4% 
paraformaldehyde (PFA) and permeabilized with 0.25% 
Triton in PBS. The cells were then blocked with 10% 
FBS. Cells were immunostained with a combination 
of Cytokeratin Pan Antibody (Invitrogen), Vimentin 

Monoclonal Antibody (V9) (Invitrogen) and CD45 (AD). 
Subsequently, slides were stained with DAPI for nuclear 
staining. ProLong™ Gold Antifade mountant (Invitrogen) 
was used to prevent photobleaching and for the preservation 
of the fluorescent labelled molecules for long term storage. 
Slides were coverslipped and imaged using Zeiss Axio 
Imager Z2 microscope.

CTCs were identified as: (I) morphologically larger 
than background cells with intact nuclei; (II) high nucleus-
cytoplasmic ratio; (III) pan-cytokeratin positive; (IV) DAPI 
positive; (V) CD45 negative; and (VI) cells larger than  
14 μm. CTCs were additionally characterized for EGFR 
exon 19 deletion (1:200) (EGFR E746-A750, Cell Signaling, 
Beverly, MA, USA).

DNA fluorescence in situ hybridization

Enriched CTC samples were cyto-centrifuged, fixed in 4% 
PFA and dehydrated through an ethanol series of 70%, 
85% and 96%. Slides were treated with RNAse (4 mg/mL) 
(Sigma, USA) and DNA FISH was then performed with 
EML4-ALK probe (Vysis LSI ALK break apart, Abbott, 
USA) as previously described (38). The cytospots were 
further counterstained with DAPI, coverslipped and imaged 

Figure 1 The experimental workflow for isolating and enriching circulating tumour cells (CTC) and downstream characterization methods. 
Using spiral microfluidics and negative depletion isolation platforms in parallel, putative CTCs are isolated. Captured cells by microfluidic 
enrichment are characterized using multifluorescent markers. Enriched cells by CD45-negative selection, guaranteed sterile conditions for 
CTC culture. Following the enrichment and expansion of viable CTCs, further downstream analysis was performed. Figure 1 was modified 
from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
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on a Zeiss Axio Imager Z2 microscope.

DNA extraction of CTCs from culture

DNA extraction was carried out using the QIAmp DNA 
Mini Kit (Qiagen, Germany) in concordance to the 
manufacturer’s instructions. DNA samples were evaluated 
for purity and quantified on a Qubit Fluorometer (Thermo 
Fisher Scientific, USA). In order to determine whether 
there was sufficient DNA prior to whole exome sequencing 
(WES) studies, DNA (50 ng) was used as a template for all 
polymerase chain reaction (PCR) amplifications. Human 
β-globin (forward: CAACTTCCACGGTTCACC; reverse: 
GAAGAGCCAAGGACAGGTAC) was used as a control 
to verify that cultured cells are of human origin. The qPCR 
used the following conditions: 50 ℃ for 2 min; 95 ℃ for 
10 min; 40 cycles at 95 ℃ for 15 s and 60 ℃ for 1 min; and 
a final melting curve analysis with following conditions: 
95 ℃ for 15 s, 60 ℃ for 1 min, and 95 ℃ for 15 s. qPCR 
was carried out for each sample on a QuantStudio™ 7 
Flex Real-Time PCR System (Applied Biosystems™) 
using PowerUp™ SYBR® Green Master Mix (Applied 
Biosystems, Thermo Fisher Scientific, USA).

WES

Genomic DNA previously isolated was used for exome 
capture. The qualified genomic DNA sample was randomly 
fragmented by Covaris technology (Covaris Inc., Woburn, 
MA, USA), after which the sizes of the DNA fragments 
were distributed between 150–250 bp. End repair of DNA 
fragments was performed and an ‘A’ based was added at the 3' 
end of each stand, then ligated to both ends of the resulting 
fragments for amplification and sequencing. Extracted 
DNA was amplified by ligation-mediated PCR (LM-
PCR) with hybridization, amplification and purification for 
enrichment. Each resulting qualified captured library was 
then sequenced on the BGISEQ-500 sequencing platform 
(Beijing Genomics Institute, Guangdong, China) and the 
desired average sequencing coverage for each sample was 
attained. Raw image files were processed using default 
parameters by BGISEQ base-calling software to generate 
pair-end reads for the data of each individual.

Variant analysis

Somatic variants were identified using the Australian 
Translational Genomics Centre’s clinical genomics 

bioinformatic pipeline v3.2.0. Briefly, FASTQ reads were 
aligned the GRCh37 human genome reference sequence 
using Novoalign v.3.09.00 (http://www.novocraft.com). 
Somatic variants were called from tumour-normal (cultured 
CTC versus blood from the same patient) pairs using 
MuTect2 as part of the Genome Analysis Toolkit v3.7 (39). 
In order to avoid spurious variant calls, filter PASS variants 
with variant allele frequencies (VAF) <0.1 were removed. 
Variants were subsequently annotated using variant effect 
predictor (VEP) v.86 (40) and converted to MAF format 
using vcf2maf.pl (https://github.com/mskcc/vcf2maf). 
Mutational signature analysis, tumour heterogeneity analysis 
and oncogenic pathway analysis was performed using 
Maftools v.1.9.20 (41) as implemented in R v.3.4.3 (42).

Statistical analysis

Correlation of CTC count at baseline with clinical stage 
was compared using Spearman’s ρ analysis. Associations of 
CTC baseline counts (>2 cells) and progression-free survival 
(PFS) were assessed using Kaplan-Meier analysis and log-
rank tests. P<0.05 was considered to signify a statistically 
significant difference. Association with baseline CTC 
counts and short-term culture success was studied using the 
Mann-Whitney test.

Results

Patient demographic, CTC counts and ex vivo expansion

A total of 70 NSCLC patients were included in this study. 
Patient demographics are shown in Table 1. The median 
age was 66 years (range, 36–89 years); including n=42 men 
and n=28 women. The histological classifications were 
adenocarcinoma (n=57), squamous cell carcinoma (n=12) 
and adenosquamous carcinoma (n=1). Patient demographics 
are listed in Table 1.

CTC enrichment and characterization using spiral 
microfluidics

Peripheral blood samples from 70 patients were isolated 
using microfluidic spiral chip and RosetteSep as described 
previously (11,14,43). Putative CTCs and CTC clusters 
were defined as pan-cytokeratin-positive and CD45-
negative cells (Figure 2A). Thirty-seven of 70 patients were 
positive for single CTCs (Figure 2A) with a CTC count 
of >2 while 16 patients had CTC clusters using spiral 

http://www.novocraft.com
https://github.com/mskcc/vcf2maf
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Figure 2 Circulating tumour cell characterization and enumeration. (A) CTCs isolated using a spiral microfluidic chip. Representative images 
of single CTCs, CTC clusters and circulating tumour microemboli (CTM). Immunofluorescent staining using anti-CK-FITC, anti-CD45-
APC and DAPI. Composite image of CTCs staining with EGFR-A750 deletion specific antibody, anti-CD45 APC and DAPI. Scale bar 
represents 20 μm. (B) Stacked bar graph showing distribution of baseline single CTCs (black) and CTC clusters (red) counts in 7 mL of blood 
based on NSCLC clinical stage. Asterix (*) signifies presence of CTM. CTC, circulating tumour cell; NSCLC, non-small cell lung cancer.
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microfluidic technology (Table S1). Of the 16 CTC-cluster 
patients, 15 had single CTCs also detected. Identification of 
CTM were seen in one patient (Pt #41) who also had single 
CTCs. In four patients where EGFR exon 19 deletion in 
the primary tissue was identified by Queensland Pathology 
and corresponding bloods was taken for CTC evaluation, 
CTCs were identified in 4/5 patients with an EGFR exon 
19 deletion specific antibody (EGFR E746-A750, Cell 
Signalling, USA) (Figure 2A). Pt #17 was positive for 
25/30, Pt #23 was positive for 5/25, Pt #44 was positive 
for 27/30 and Pt #67 was positive for 1/1. The distribution 
of CTC types identified from the patient cohort is shown 
in Table 1. Single CTC and cluster count distribution for 
NSCLC clinical stages is illustrated in Figure 2B. CTCs 
were identified 3/3 stage I–II, 24/26 stage III, 37/40 stage 
IV patients. Higher CTC counts were observed in patients 
with advanced stage disease.

Association of CTC with PFS in NSCLC

The CTC assessment at baseline was measured against 
patient survival curves using Kaplan-Meier curves. In total, 
32 patients had <2 CTCs at baseline and 37 patients had 
>2 CTCs. Survival was evaluated for treatment naive and 
relapse/refractory patients. There was not a significant 
association between survival outcomes and treatment naive 
vs. relapse/refractory patients. Treatment naive patients 
with CTC counts of <2 did not have any significant PFS 

compared to those with >2 CTCs [hazard ratio (HR): 3.368; 
95% confidence interval (CI): 0.9549–12.34; P=0.0993] 
(Figure 3A). This was also observed for relapse/refractory 
patients (HR: 1.630; 95% CI: 0.5227–5.085; P=0.3241) 
(Figure 3B).

Analysis of ALK FISH using spiral enriched CTCs

Detection of ALK rearrangements from enriched CTCs 
using FISH by Vysis Break Apart FISH Probe kit (Abbott 
Molecular, Abbot Park, IL, USA). One patient was known 
to have an ALK-positive tumour, also had detectable CTC 
counts (Figure 4). EML4-ALK translocation was identified 
in in 8/9 (88.9%) CTCs (Figure 4).

Ex vivo culture of isolated CTCs from patients with non-
small cell lung cancer (NSCLC)

Short term cultures were established from 9 patients (13%) 
using RosetteSep (Stemcell Technologies™, Vancouver, 
Canada) enrichment for up to 40 days in Clevers media 
and hypoxic conditions (1–2% O2) (Figure 5A and Table 2). 
Once patient derived cultures were confluent (80–90%) the 
wells were collected for molecular/protein characterization 
assays. ICC on the cultured cells was showed that these cells 
were of epithelial origin and CD45 negative (Figure 5A). In 
patients 7, 25, 46, 51 and 58 high confluency was reached in 
7–14 days and were proliferative for up to 50 days. Patients 

Figure 3 Kaplan Meier curves for (A) CTC count for treatment naive patients [hazard ratio (HR): 3.368; 95% confidence interval (CI): 
0.9549–12.34; P=0.0993]; (B) CTC count for relapsed/refractory patients (HR: 1.630; 95% CI: 0.5227–5.085; P=0.3241). CTC counts are 
divided into two categories >2 or <2 for non-small cell lung cancer patient cohort. CTC, circulating tumour cell.
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17, 34, 41 and 66 reached a low cell confluency by day 14 
and were proliferative for up to 40 days. All patients were 
CTC positive with clusters were detected in 2/7 cultured 
samples (Pt #17 and #41), additionally the presence of 
CTM was identified in patient #41 as shown in Table 2. 
Cultures were positive in samples with 5 or more CTCs in 
7mls of blood as shown in Figure 5. It was also observed that 
the culturability wasn’t affected by an increased number of 
CTCs (Figure 5B).

WES and bioinformatics analysis of expanded CTCs

WES of cultured CTC and matched germline (blood) 
material from Patient #7 was conducted. A total of 1,633 
somatic variants were detected in the CTCs, of which 1,430 
were silent mutations. The remaining mutations were 

predominately missense mutations (n=191), as well as in-
frame INDELs (n=5), splice site variants (n=3) nonsense 
mutations (n=2) and frameshift deletions (n=2) (Figure 6A).  
Density plotting of the variant allele frequency (VAF) 
distribution revealed four distinct clusters of VAFs with 
frequencies typically ranging from 0.1 to 0.25. These 
numerous, low VAF, clusters were indicative of a high degree 
of high tumour heterogeneity/polyclonality (Figure 6B).  
The mutational composition (a.k.a. signature) of the 
sample was compared to mutational signatures present in 
the COSMIC database (44) to determine the underlying 
mutational processes generating the somatic variants. 
Following 100 computational iterations, three distinct 
mutational signatures were noted: signature 1 (average 
cosine similarity 0.79) a common mutational signature 
across all cancer types which results from spontaneous 

No ALK Rearrangement

ALK EML4

3' 5'

3' 5'

EML4-ALK Fusion

EML4-ALK

A

B

Figure 4 Molecular fluorescence in situ hybridization (FISH) assessment on CTCs enriched from NSCLC. Cells were stained using Vysis 
Break Apart FISH probe and further counterstained with DAPI. Red and green signals represent a separation of the original fusion signal 
(arrows), indicating rearrangement in the 2p23 ALK-gene locus. Scale bar represents 10 μm. CTC, circulating tumour cell; NSCLC, non-
small cell lung cancer.
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deamination of 5-methylcytosine, signature 2 (average 
cosine similarity 0.75) a common mutational signature 
with unknown aetiology which is also observed across all 
cancer types, and signature 3 (average cosine similarity 
0.74) a signature resulting from defective DNA mismatch 
repair which is noted to occur in LC as well as some other 
cancer types. Whilst the precise mutational process driving 
somatic mutation remains unclear, the observed mutational 
signature was consistent with that of a LC (Figure 6C). 

Three missense mutations were noted to occur in oncogenic 
pathways, two of which were predicted to be benign (TSC1-
322Thr in the PI3K pathway and WNT8B-11Ser in the 
WNT pathway). The third mutation (FGFR4-388Arg in 
the RTK-RAS pathway) was predicted to be damaging and 
has previously been noted to promote LC progression (45).  
A full list of annotated variants is available at http://
fp.amegroups.cn/cms/91cf48db5d4b8fef6b36eba0510a33
ea/TLCR-20-521-1.pdf.

Figure 5 Ex vivo expansion of circulating tumour cells. (A) Isolation, expansion and characterization of CTCs from patients with advanced 
stage NSCLC. Cultured CTCs derived from patient blood in 96 well standard microplate. In well staining of proliferating cells in culture 
at day 7. Immunofluorescent staining using anti-CK-FITC and anti-CD45-APC. These cells were shown to be CD45 negative. (B) 
Correlation between baseline CTC count with short term culture success. CTC, circulating tumour cell.
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Table 2 Clinical details, CTC counts and culture observations of short-term culture positive samples

Patient # Subtype Stage
CTC count/ 
7 mL blood

CTC cluster count/ 
7 mL blood

Culturability

7 Squamous cell 
carcinoma

IV 20 0 30% confluent on day 7, proliferative up to day 20

17 Adenocarcinoma II 25 1 10% confluent on day 14, proliferative up to day 40

25 Adenosquamous cell 
carcinoma

IV 15 0 50% confluent on day 14, proliferative up to day 20

34 Adenocarcinoma IV 20 0 10% confluent on day 14, proliferative up to day 40

41 Adenocarcinoma III 55 5 10% confluent on day 14, proliferative up to day 50

46 Adenocarcinoma IV 5 0 50% confluent on day 14, proliferative up to day 30

51 Adenocarcinoma IV 35 0 30% confluent on day 7, proliferative up to day 20

58 Adenocarcinoma IV 5 0 50% confluent on day 14, proliferative up to day 40

70 Adenocarcinoma IV 5 2 30% confluent on day 20, proliferative up to day 40

CTC, circulating tumour cell.

http://fp.amegroups.cn/cms/91cf48db5d4b8fef6b36eba0510a33ea/TLCR-20-521-1.pdf.
http://fp.amegroups.cn/cms/91cf48db5d4b8fef6b36eba0510a33ea/TLCR-20-521-1.pdf.
http://fp.amegroups.cn/cms/91cf48db5d4b8fef6b36eba0510a33ea/TLCR-20-521-1.pdf.
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Discussion

Metastasis is the leading cause for cancer-related deaths. 
Over 30% of patients with NSCLC develop recurrences 
due to metastasis at diagnosis (46-48). One of the reasons 
for this is the lack of consideration for metastatic seed, 
CTCs. In our study, CTCs were identified in 38/70 (54.3%) 
NSCLC patient’s blood samples, with the inclusion of single 
CTCs, CTC clusters and CTM. Our CTC detection rates 
were comparative to that of Freidin et al. who detected 56% 
and 65% (49). We found no significant association between 
CTC counts in NSCLC cancer patients with early stage 
than with late stage disease. This is supported by previous 
studies by Freidin et al., Chudsama et al., Mascalchi et al., 
who reported no significant correlation between tumour 
stage and number of CTCs detected (49-51). Consistent 
with previous studies investigating the prognostic role of 
CTCs in LC (52-57), we confirmed that baseline CTC 
counts are significantly associated with PFS.

We were able to ex vivo culture CTCs derived from 
advanced stage patients’ blood samples. Cultures grown in 
hypoxic conditions were successful from CTC counts as low 
as 5 CTCs/7.5 mL of blood and were proliferative for up to 
40 days. Hypoxia is a vital growth stimulus that promotes 
metastatic progression and is commonly used for CTC 
culture to ‘mimic’ conditions observed in vivo at distant sites 
where oxygen tensions are low (58-61). Another essential 
culture condition was the use of Clevers media, previously 
used for the culture of prostate derived CTCs (37). Clevers 
media promotes a stem cell phenotype. Additional growth 
factors in the media such as R-spondin-1 is used to sustain 
survival through Wnt signalling as a pivotal requirement 
for proliferation and growth of epithelial cells (30,37,62,63). 
We were able to confirm that the CTC culture from 1 
patient showed a NSCLC genotype, which provided us with 
confidence that the developed culture methodology could 
be used in NSCLC. Further studies, using advance stage 
patients with higher burden-of-disease may be desirable to 
determine the effectiveness of the methodology.

In this study, we identified the presence of CTM in the 
blood of one patient, who also showed successful expansion 
short term (Pt #41). The presence of CTC clusters has 
been previously shown to have higher metastatic potential 
when compared with single CTCs (9). Clusters comprised 
of CTCs known as CTM, allow tumour cells within to be 
protected from apoptosis and have shown to drive cell cycle 
progression and increase metastatic potential of CTCs 
(12,15).

Clinically relevant biomarkers, EGFR del 19 mutation 
and ALK rearrangements were also analysed in a subset of 
patients. The presence of ALK rearrangement on CTCs 
from an ALK positive patient, validating previous studies 
(64,65). In 4/5 patients where tumours were identified 
as EGFR exon 19 del, EGFR mutation was detected 
in isolated CTCs, confirming that CTCs can be used 
as proxy to investigate tumour activities. This supports 
previous studies where EGFR mutation has been detected 
in CTCs which were concordant with mutation status in 
corresponding tumour (31,66-68). The mutation-specific 
antibody for E746-A750 selected has previously identified 
EGFR mutation detection in CTCs (11). This fast, low-cost 
approach shows promise for the detection of this mutation 
in NSCLC, particularly, where access to tumour tissue is 
limited, may enable early interventions and better treatment 
management (69). Further validation is necessary in order 
to confirm the clinical utility for screening EGFR del 19 
mutation in NSCLC patients (70,71).

To determine the concordance between the primary 
tissue and CTC cultures, WES was performed in a subset 
of patients where sufficient DNA was available from the 
CTC cultures (n=9). Exome sequencing of CTC and white 
blood cells (as germline control) confirmed the presence of 
somatic mutations in the CTC culture of patient #7 with 
mutational signatures consistent with LC. Three missense 
mutations were observed to arise in oncogenic pathways. 
While two mutations (TSC1-322Thr in the PI3K pathway 
and WNT8B-11Ser in the WNT pathway) were predicted 
to be benign, the third mutation (FGFR4-388Arg in 
the RTK-RAS pathway) is predicted to be functionally 
relevant, having been reported to promote activation of 
pathways relative to cancer, and has been associated with 
the progression of LC (45). To better understand genomic 
heterogeneity, it is desirable to obtain genomic profiles 
throughout the course of the disease at multiple timepoints. 
Acquiring longitudinal samples was limited in the current 
study as the patient cohort had advanced stage with poor 
survival. Sufficient DNA yields were not available on the 
other eight CTC cultures at the timepoint at which the 
cultures were harvested.

Several efforts to propagate CTC ex vivo cultures have 
had limited success, particularly for NSCLC (72,73). Here 
we describe a method that allowed expansion of CTCs in 
culture in a subset of patients, which may provide a better 
understanding into CTC heterogeneity and mechanisms 
of metastasis. Further studies are necessary in the NSCLC 
field to establish CTC cell lines to model transient 
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disease, in order to evaluate and discover new therapeutic 
approaches. Ideally, cancer cell lines would be routinely 
generated from each cancer patient but this is currently not 
realistic (15,28,30). This culture method may provide new 
spectrum of prospective functional analyses which in turn 
provide powerful ability for modelling cancer heterogeneity 
at clinically relevant timepoints.

Conclusions

With LC being the highest cause of cancer mortality 
worldwide, one of the biggest challenges for managing and 
treating patients is the lack of early screening/diagnostic 
methods (5,74). In order to monitor tumour evolution and 
understand mechanisms underlying resistance, genomic 
analyses of NSCLC are essential however, is currently 
limited by the accessibility to tumour specimens. The 
use of CTCs as a minimally-invasive liquid biopsy could 
accompany standard screening tests and also allow for 
molecular and genetic characterization during tumour 
progression in real time (75). Additionally, genomic analysis 
of CTCs provides important information for personalized 
therapy, however the difficulty of low DNA yield from the 
small number of captured CTCs remains a large hurdle. 
To meet this challenge, expansion of CTCs in cell culture 
systems allows for downstream functional analysis.

As demonstrated in our current study, the facilitation of 
liquid biopsies to capture CTCs for genomic analysis, has 
promise in non-invasive cancer genotyping and monitoring 
of disease. In addition, the expansion of CTCs captured 
through minimally invasive clinical samples provide valuable 
opportunity to study NSCLC biology. In the future, the 
authors envisage recruiting longitudinal samples from 
NSCLC patients for the monitoring of disease to determine 
the changes in CTCs over time.
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Supplementary

Table S1 CTC detection and ex vivo culture confirmed by basic CTC characterisation

Pt ID Single CTC enumeration (7.5 mL) CTC cluster enumeration (7.5 mL) Establishment of culture

1 5 0

2 10 0

3 0 1

4 55 0

5 10 0

6 15 0

7 20 0 Yes

8 5 1

9 5 1

10 15 0

11 35 3

12 5 0

13 15 0

14 5 0

15 30 0

16 25 0

17 25 1 Yes

18 10 0

19 5 0

20 20 3

21 10 0

22 20 0

23 25 1

24 10 0

25 15 0 Yes

26 15 0

27 0 0

28 0 0

29 45 1

30 5 0

31 0 1

32 25 0

33 10 0

34 20 0 Yes

35 15 0

36 15 0

37 5 0

38 0 0

39 0 0

40 15 0

41 55 0 Yes

42 5 0

43 45 0

44 30 0

45 25 0

46 5 0 Yes

47 50 0

48 70 0

49 15 0

50 35 0 Yes

51 45 0

52 5 0

53 25 0

54 60 2

55 385 0

56 45 3

57 5 0

58 5 0 Yes

59 0 0

60 5 0

61 5 1

62 15 0 Yes

63 5 0

64 30 1

65 25 0

66 0 0

67 5 1

68 10 0

69 50 0

70 5 2 Yes

CTC, circulating tumour cell.


	12-TLCR-20-521含附录
	12-TLCR-20-521 附录

