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Abstract

In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male
infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in
vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection
(ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM)
outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here,
a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on
natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems
suggests new hope for male fertility preservation through development of functional male germ cells. To date, few
studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial
body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This
review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ
culture applied to the germline for fertility preservation through in vitro spermatogenesis.
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or testicular tissue culture for the sake of male germ cell
expansion and/or differentiation.>” These techniques can
provide forthcoming opportunities for genome conserva-
tion and fertility treatment of non-cancerous infertile men
as well as adult, juvenile, and pre-pubertal cancer patients.

The underlying mechanisms of male germ cell differ-
entiation, resulting in mature haploid spermatozoa within
a structurally well-organized tissue, have been a key
research topic for many decades. The bi-functional prop-
erties of the testis as a gonadal tissue and a glandular tis-
sue means the in vitro sperm generation from male
germline stem cells is still considered challenging since
the entire process of spermatogenesis must be carried out
within a cell culture dish.

The mammalian testicular tissue is generally divided
into two distinct regions, the seminiferous tubules, and
interstitial tissue.® It has been shown that progressive seg-
mentation of presumptive testis tubular structures initiates
from an amorphous primordium into cords (infantile/
immature testis cord), and then enlargement of the testis
cords occurs developing mature seminiferous tubules.
Although seminiferous tubules comprise diverse testis cell
types and components in young men namely SSCs, Sertoli
cells, basement membrane (deposited by Sertoli cells), and
peritubular myoid (PTM) cells, they become branched and
the SSCs differentiate into fertile spermatozoa through
spermatogenesis in adult males.” The Sertoli cells also
experience dramatic transformation in both function and
morphology at the beginning of puberty. These supporting
cells produce certain types of proteins, growth factors,
steroids, cytokines, and tubular fluid at different stages of
development and finally form the blood-testis barrier
(BTB) thereby fulfill a critical role in both the testis devel-
opment and spermatogenesis.'’ Another kind of cell called
Leydig cells which are also found in the testicular inter-
stittum and secrete the steroid hormone (testosterone) in
the presence of the luteinizing hormone (LH) initiating the
masculinization of the male fetus and preserving postpu-
bertal spermatogenesis.'!

Spermatogenesis is a complex process in the mamma-
lian testis which initiates with proliferation and differenti-
ation of diploid spermatogonial stem cells, followed by
meiosis of spermatocytes to form round and finally elon-
gated spermatids.'>!* To complement current knowledge
from clinical studies with a description of relevant gene
mutations, there is a requirement for in vitro models to
shed light on the mechanisms involved in sperm genera-
tion. Fundamental new knowledge and understanding that
can be gained from in vitro spermatogenesis are crucial to
allow transgenic manipulation of male germ cells, and in
addition in vitro systems can support the artificial matura-
tion of immature germ cells obtained from infertile male
patients.

Species-specific  spermatogenic  differences have
remained a major obstacle toward the recapitulation of

spermatogenesis in vitro.'* Two morphologically recog-
nizable spermatogonial subtypes are found in primates.
The Adark spermatogonia are considered as the testicular
stem cell (the regenerative reserve) with high-proliferative
activity, however, the A . acts as progenitor cells (the
functional reserve) which can divide mitotically to pro-
duce both A . and differentiating B spermatogonia. The
latter is followed by further mitotic and meiotic divisions
after puberty to give rise to primary and secondary sper-
matocytes and finally functional spermatozoa.'>'
However, in contrast to primates, a non-progenitor buff-
ered system exist in rodents where all seven types of A
spermatogonia (Asmgle, Apair, Aaligned’ Al, A2, A3, and A4)
result clonally and directly from a single testicular stem
cell type (the A, spermatogonia). The further differen-
tiation of A spermatogonia through incomplete mitosis
form intermediate and B spermatogonia which have cyto-
plasmic bridges. The subsequent maturation of B spermat-
ogonia leads to primary and secondary spermatocytes,
spermatids, and spermatozoa commitment, respectively'’
(Figure 1). It is noteworthy that these physiological differ-
ences in testicular tissue could be related to the different
lifespan of small rodents (short) compared to primates
(long) with the aim of compensating the numbers of
offspring.'3

In vitro investigations have aimed at mature and func-
tional spermatozoa generation, and the first study of in
vitro spermatogenesis was carried out with testicular organ
cultures of neonatal rodents. Germ cells could maintain
their normal 3D arrangement and microenvironmental
composition, however, these studies demonstrated the
arrest of spermatogenesis and no progression beyond the
meiotic stages.'®!° Conversely, it has been shown that it is
possible to continue the in vitro differentiation of develop-
mentally hindered round spermatids into mature spermato-
zoa in patients with round spermatid arrest.?’ Although in
vitro mature spermatids are likely to have low fertilization
ability, in the cases of successful fertilization, they are able
to form normal blastocysts.?! It should be noted that suc-
cessful in vitro differentiation of human male germ cells
from earlier developmental stages, starting from cultured
SSCs with differentiation into mature spermatozoa, has
been reported recently by Yuan et al.?? for the first time.

Recent studies have shown that cells often exhibit
unphysiological characteristics such as poor cell differen-
tiation, less cell-to-cell communications as well as different
gene and protein expression profiles in comparison to in
vivo models when cultured on a two-dimensional (2D) sur-
face as a monolayer.?? Characterization of stem cell prolif-
eration and differentiation has revealed acute differences in
cell function and behavior between 2D and 3D microenvi-
ronments, which suggests that models of hierarchical biol-
ogy in 3D structures may be required to efficiently mimic
natural tissue.>* Although conventional culture systems
have been widely used to grow germ cells for assisted
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Figure 1.

Schematic representation of species-specific spermatogenic cycle differences between rodents and primates (Aal:

Aaligned; Ap: Apair; As: Asingle; B: Type B spermatogonia; In: intermediate spermatogonia; Pl: preleptotene spermatocytes). The
current and specific future applications of advanced technologies in male fertility preservation and in vitro spermatogenesis, utilizing
organ culture techniques, hydrogels, scaffolds, microfluidic systems, bioprinters, and bioreactors are illustrated and compared to the
conventional culture systems. Some items created with BioRender.com.

reproductive techniques (ART), the complex physiological,
functional, and spatial arrangements of testicular tissue
cannot be remodeled and finally, the complete process of
spermatogenesis is not able to be replicated in such 2D sys-
tems.?> The recapitulation of physiology and morphology
of the mammalian testis microenvironment outside of the
body requires one more dimension compared to the 2D cul-
ture systems.?®?” Comprised of natural and synthetic bio-
materials along with testicular cells, the 3D approaches
support the relevant cell-cell and cell-matrix signaling
involved in spermatogenesis.’®?* The three-dimensional
culture models for testicular tissue/cell culture potentially
can provide all essential parameters of this organ for both in
vitro spermatogenesis or male fertility preservation.

The development of reliable and robust in vitro bioen-
gineered testicular models introduces options for replace-
ment of animal models in order to fulfill the 3Rs ethical
principles (reduction, refinement, and replacement) and
provide well-organized systems to be alternatives for
scarce immature or mature human testicular tissue sam-
ples. Besides the medical ethical concerns, there are

several logistic, religious, or cultural hurdles which
impede male reproduction research utilizing conven-
tional tissue/cell culture methods.?*2 To overcome this
challenge, innovative technologies and broad interdisci-
plinary knowledge from related areas could be applied to
induce in vitro spermatogenesis or improve pregnancy
outcomes (which were hindered by male infertility
causes) in clinical settings in the future. Considering the
existing scientific and technical developments in research
settings and the potential for generating viable sperm in
vitro, the next decade will bring both foreseen and unex-
pected opportunities and ethical challenges to traditional
ideas of human and animal reproduction. Dialog with and
involvement of patient groups, the general public, politi-
cians, and regulatory bodies at an early stage is needed. It
is important that these technologies are applied within a
fair and open human societal framework and aid in
opposing social disparities rather than adding to them.
There is a clear need for ethicists and legal experts to be
involved at each stage of future development and
implementation.
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The technologies described in this review will be the
key to future solutions making use of 3D culture, advanced
scaffolds, and microfluidics to provide in vitro spermato-
genesis and male fertility preservation. These technologies
can provide better mimics of the species-specific and age-
specific arrangements of the testis and biomechanical and
biochemical properties of the mammalian reproductive
tract and may overcome the imperfections of in vitro 2D
culture vessels (Figure 1).

Organ culture techniques in male
fertility preservation

In vitro organ culture systems are considered as relevant mod-
els for the investigation of pathophysiological mechanisms
which can accurately mimic the functions of an organ in vari-
ous states and conditions.?* By culturing tissue fragments or
entire organ in vitro, the tissue structure can be preserved to
support the natural developmental processes.** Organ cul-
tures provide an opportunity to manipulate the paracrine envi-
ronment and also to examine the role of each growth factor
individually on the spermatogenesis process.*®

The 3D testicular tissue culture systems are appropriate
for spermatogenesis progress as they can maintain the
interaction of the seminiferous tubules and interstitial
area.’® It seems that this system can be used to induce and
resume spermatogenesis by in vitro SSC transplantation, in
order to produce mature sperm for high-level therapeutic
reproductive medicine applications.?” Although the appro-
priate conditions for culture of testis tissue and testicular
cells are different, the media used for organ culture are gen-
erally the same as those used for cell growth. However,
such media need to be optimized by adding specific essen-
tial and effective ingredients (such as retinoic acid, lutein-
izing hormone, FSH, triiodothyronine, testosterone, or
other sorts of vitamins, antioxidants, hormones, and growth
factors) to promote in vitro spermatogenesis.>$ 4’

Plasma clot, raft, and grid methods

Several methods for in vitro culture and maintenance of
intact tissues have been developed since the “watch-
glass method” was introduced by Fell and Robison*'#?
(Figure 3(a)—(c)). In this approach, the main goal is to
provide adequate oxygen availability to explants to
reduce the risk of cell death utilizing a watch glass. The
plasma clot approach is one example that can be
employed for the study of morphogenesis in embryonic
organs or assessment of carcinogens, hormones, or vita-
min functions in adult mammalian tissues.**** A clot of
plasma with specific active additives (embryo extract)
is the key part of this method which is placed in a watch
glass. In another technique called the “raft method,” the
fragmented tissue is placed on a floating raft of lens
paper or rayon acetate mesh instead of a watch glass.*¢47
In the modified version of the plasma clot technique

which is a combination of two abovementioned
approaches, the explant is laid on a raft of lens paper or
rayon in order to transfer the tissue easier and facilitate
removal of the excess fluid. Champy showed the first
result of in vitro spermatogenesis using the organ cul-
ture of rabbit testis tissue.*® This report revealed somatic
and undifferentiated germ cells survived for 7 days and
in vitro male germ cell development was terminated up
to the meiotic prophase. Around two decades later,
Martinovitch* indicated that neonate mouse spermato-
gonia can differentiate to pachytene spermatocytes
(merely based on cell morphology) on a clot consisting
of equal parts fowl plasma and fowl embryo extract.
This first experimental method caused preservation of
the original form of numerous seminiferous tubules for
17 days cultivation, but could not support germ cells
growth after the 20th day.

One stumbling block of the raft floating approach is
that it did not prevent the immersion of tissues into the
medium which led to the establishment of a grid system by
Trowell.*® The grid system consists of perforated steel
sheets in which the tissue of interest is laid on before being
placed in a culture chamber filled with fluid up to the grid.
Regarding different stiffness levels of tissues, skeletal tis-
sues are usually placed directly on the grid, but softer tis-
sues, such as the skin or glands, first need to be laid on
rafts so that can be held over the grids. Several organs of
adult rats such as the testis were cultured on this system
but the results revealed that most tubules had degenerated
with only a few tubules surviving for up to 3 days. !>

Agar gel method

In this method introduced first by Spratt,>* a combination
of agar, embryo extraction and horse serum is used as a
medium for organ culture, furthermore, the defined media
supplemented with or without serum also can be utilized
with agar as alternatives options. Although agar-based
media offers a suitable environment for the culture of
embryonic organs, adult organs almost not stay alive on
such medium.

Until now, different studies have investigated the poten-
tial features of an agarose gel layer as a supporter and
inducer of spermatogenesis.**’ It is worth saying that this
agarose-based system can be used as a support layer for tes-
tis organ culture in either fragmented or whole testis and for
the culture of host testis fragments.’*>® Some researchers
have reported successful spermatogenesis induction by use
of agar gel supports in 3D organ culture (Table 1). In 2011,
Sato et al.’® designed a new in vitro organ culture system
onto which mouse SSCs lines are transplanted and can form
colonies and differentiate up into fertile sperm. The obtained
haploid cells characterized based on both cell morphology
(histological, immunohistochemical examinations) and
genetic markers (SYCP-1, SP56), gave rise to healthy off-
spring when tested using micro-insemination. The authors
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further suggested that the developed system could generate
sperm from SSCs with the observed spermatogenic arrest
caused by a microenvironmental deficiency in their original
testes. Soft agar gels also provide protective effects against
ischemia and were found to be beneficial for prolonged cul-
tures. In 2013, Yokonishi et al.*® cultured immature mouse
testicular tissue on agarose gels (1.5% (w/v)) under culture
conditions. Above and beyond the generation of sperms,
which are identified by morphological, histological,
Immunohistochemical evaluations, they pointed out other
advantages of this approach as follows: (1) viable testis tis-
sue fragments after the freeze-thaw process leading to the
generation of fertile haploid cells, (2) experimental repeti-
tions were more feasible, (3) preservation of in vitro sper-
matogenesis for more than 2 months.

In recent years, in vitro transplantation of SSCs to testis
and organ culture of host testis for full spermatogenesis
induction are considered a significant accomplishment.
For instance, Sato et al.® offered an organ culture system
that supports sperm generation from mouse germ stem
cells (GSCs) when transplanted in tissue fragments. Sperm
formation from GSCs takes approximately 6weeks for
mice®® and 8 weeks for humans** and only mouse sperms
were viable and resulted in healthy offspring.

Furthermore, a research team recently presented an inno-
vative organ culture system as a potential model for spermat-
ogenic regulation investigation by wholly culturing the
marine medaka testes outside of the body as a result of their
small size. An agarose gel stand was the key part of this sys-
tem which provided a gas-liquid interface for the culture of
adult Oryzias dancena (a type of fish) driven whole testes.
Their result according to the morphology and genetic investi-
gations showed that germ cell proliferation preservation and
germ cell differentiation induction was achieved via the organ
culture of the medaka whole testis on an agarose gel stand.>

As a remarkable breakthrough for male reproductive
research, a very recent study carried out by Yuan et al.?
reported robust modeling of in vitro human testicular
organogenesis from the fetal genital ridge. The human
gonads of aborted 12- to 19-week fetuses were separated
into fragments and were laid on agarose gel stands.
Functional seminiferous tubules were formed in this 3D
system which was supplemented with components such as
10% KSR, BMP 4/7 (20ng/ml), SCF (20ng/ml), Activin A
(100ng/ml), testosterone (10mM), FSH (200ng/ml), and
BPE (50mg/ml), and could support both spermatogonia
self-renewal and the maturation of haploid spermatids.
Furthermore, the development of the resulting embryo to
the blastocyst stage via ROSI proved the functionality of in
vitro-derived spermatids with a fertilization rate of 12.5%.

Hydrogel applications in male fertility
preservation

Hydrogels are known as a group of scaffolds providing a
temporary tissue-mimicking environment for cells to

become attached, efficiently proliferated, differentiated,
and even regenerated. Hydrogels are 3D self-assembled
hydrophilic biopolymer networks that consist of highly
interconnected microscopic pores and are therefore capa-
ble of binding and absorbing a large quantity of water as
well as biological fluids. Hydrogels can effectively pro-
vide a cell-compatible and mechanically stable microenvi-
ronment which can disseminate and transport vital
nutrients and cell-secreted molecules and can also stimu-
late specific cellular responses.®®®’ Their biocompatibility,
their similarity to the native extracellular matrix, and the
ease of processability make them promising scaffolds for
well-engineered culture environments with replicated ana-
tomical structures and primary functions of a particular tis-
sue.%® It is well known that the speed of revascularization
and neoangiogenesis is fundamentally dependent upon the
biophysical, chemical, and mechanical properties of the
scaffold. Cross-linking and/or controlling the affinity of
hydrogels in an aqueous medium are simple methods for
altering the porosity and the structure of hydrogels to facil-
itate the migration of cells.®>’® These appealing features
provide unequivocal evidence of the capability of hydro-
gels and the excellent opportunity for meiotic or postmei-
otic differentiation of germ cells by their application.
Recently, several efforts have been directed toward the use
of hydrogels for testicular tissue and cell culture, and co-
culture strategies have mainly focused on the differentia-
tion of spermatogonial stem cells into haploid sperms
(Figure 2). A variety of natural and synthetic polymers
have been used to fabricate hydrogels; however, natural-
based hydrogels are particularly interesting 3D matrices,
highly appreciated for their non-toxic and biocompatible
nature (Table 2). The biodegradability and bioresorbability
of these biomaterials provide cells and tissues with multi-
functional 3D matrices without inducing inflammation. !
Based on the fact that ECM is mainly comprised of pro-
teins and polysaccharides®”’2, two groups of natural-based
polymers including proteins (such as collagen) and poly-
saccharides (such as chitosan and alginate) have been uti-
lized for the spatial arrangement of testicular cells.
Collagens are the most widely investigated polymer
with a biological origin since it is the most abundant struc-
tural protein of ECM. Collagen-based hydrogels have pre-
pared a permissive environment for culturing,
differentiation, and maturation of germ cells, providing a
niche for re-aggregation of testicular cells isolated from
either humans or animals.”7%% The similarity of their
structure to ECM has provided adequate access to struc-
tural proteins, biological molecules, air (oxygen), and the
growth factors secreted by Sertoli cells.”® The presence of
laminins in the structure of collagen-based gels causes
beneficial effects on the viability of testicular cells.
Laminins are one of the significant components of the
basement membrane, possessing a remarkable modulatory
role in the secretion of paracrine and autocrine growth fac-
tors, proteins, and transferring from Sertoli cells, which
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Potential cell sources .
(Tecticular cells, iPS ESCS); ‘

—— -
Adding SDS,
Triton, EDTA, ...

Porous scaffolds
(TIPS, gas foaming |
/salt leaching, ..)

' (collagen, alginate, agar,
@ chitosan, fibrin, CNT, NP,
laminin, gelatin, PLLA, ..}

3D (bio) printers

Electrospun scaffolds

Figure 2. Schematic representation of applicable certain state-of-art technologies in male fertility preservation and in vitro
spermatogenesis. Bioscaffolds in forms of hydrogels, porous, or fibrous structures can be fabricated via different approaches
(electrospinning, 3D printers, thermally induced phase separation (TIPS), gas foaming/salt leaching, acellularization of tissues, and so
on) using natural (collagen, alginate, agar, decellularized testis tissue-driven ECM, . . .) or synthetic (PLLA, PVA, PCL, . . .) materials.
The fabricated scaffolds could be seeded with potential cell sources to accomplish their goal for male fertility preservation. Some

items created with BioRender.com.

directly affect the survival and differentiation of testicular
cells throughout development.”**'=%* Direct cell-to-cell
communication is one of the essential signaling routes and
of extreme importance for spermatogenesis efficiency and
could be well-supported by hydrogels. Using collagen gel
matrices, cells could be embedded in a thick layer, provid-
ing an extracellular milieu which successfully resembles
the functions of the seminiferous epithelium.’*7® Besides
these benefits, such 3D culture microenvironments protect
the cells from ischemia, especially in long-term culture
systems.**

Collagen gel solely or in combination with Matrigel has
provided a great opportunity for germ cells to be in close
contact and interacted actively with somatic cells and
ECM. In a study carried out by Lee et al., rat testicular
cells were cultured on the collagen gel (CG), or colla-
gen + Matrigel (CGM). These matrices had the potential
to re-aggregate dissociated cells and supported meiotic
and post-meiotic progression and differentiation of male
germ cells which were proven by analyzing DNA content

and immunohistochemical examination (TP2 marker).”*
Moreover, the observation of 3 hydroxysteroid dehydro-
genase-positive cells and occludin-positive cells in a cyst-
like structure indicated the existence of Leydig and Sertoli
cells, respectively.

Encouragingly, the cellular phenotype on collagen
matrices, the cell subpopulation composition, and cell
behaviors were shown to be similar to those in in vivo situ-
ations.”® In addition to these effects, the presence of Sertoli
cells in the collagen gel matrix and co-culture of these
somatic cells with mouse SSCs helped the promotion of
meiotic and post-meiotic differentiation through looking at
mRNA expression profiles of synaptonemal complex pro-
tein-3 (SYCP3), Crem, and thyroid transcription factor-1
(TTF1).7® This corroborates the prominent role of these
cells in the propagation of germ cells in 3D culture
microenvironments.

Mention must be made that Matrigel also can be
employed to support in vitro male germ cell development
without combination with other natural/synthetic-based
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polymers.®*$3¢ Human SSCs cultured on the induced 3D
system comprising Matrigel with defined media (DMEM/
F12, 10% KSR, RA 2 uM, SCF 100 ng/ml, BMP4 100 ng/
ml, and testosterone 10 °M) are able to differentiate and
generate functional haploid spermatids. The obtained
round spermatids identified by DNA content, meiotic
chromatin spread, immunocytochemical, FISH, and mul-
tiplex real-time PCR analysis along with RNA sequenc-
ing, and bisulfite sequencing revealed the differentiation
efficiency of this culture system to be up to 17.9%.%* In
another study carried out by Fayomi et al.,’> the imple-
mentation of Matrigel for autologous grafting of cryopre-
served prepubertal rhesus testis did not exhibit any
significant impacts on the graft growth, sperm recovery,
and the percentage of tubules containing spermatids and
sperm.

Immense attention has been directed toward either sin-
gle-layer soft agar scaffolds or with a two-layered archi-
tectural arrangement in which a solid layer (for culturing
supporting cells such as Sertoli cells) is placed beneath an
SSCs-enriched soft gel layer.”®*° Such arrangements more
closely simulate the in vitro conditions in seminiferous
tubules and appear to promote spermatogenesis by pre-
venting the contamination of the SSC-embedded gel
phase.”®% The provision of such a complete milieu caused
enhancement of cell colony formation and clonal out-
growth into the gel phase and make these systems promis-
ing for the expansion/support of differentiation in
premeiotic, meiotic, and even postmeiotic steps of sperma-
tozoa.” The major advantage of co-culturing the somatic
and germ cells in these arrangements is the enhancement
in the extent of germ cell expansion as well as colony for-
mation.”®* However, Stukenborg et al.”® have suggested;
based on mRNA expression profile and immunohisto-
chemistry results, that the co-culture of these cells (iso-
lated from mouse) in this type of biphasic culture media
could not result in post-meiotic differentiation and this
stage is only available in scaffolds where all the cells are
co-cultured in a single compartment of agar gel. The pres-
ence of gonadotrophins in the culture medium and supple-
mentation of the soft agar scaffolds with this hormone
enabled the meiotic mouse germ cell colonies to be main-
tained continuously in the culture medium and conse-
quently allowed the formation of late post-meiotic round
and elongating spermatids identified through immunohis-
tochemical and morphological analysis and the nuclear
DNA content assessments.”

Alginate is another available biomaterial with high
applicability for 3D cell culture as well as cell immobili-
zation and cryopreservation.’® Alginate possesses such
unique characteristics as the ability to formulate hydro-
gels with 98%—-99% aqueous media at physiological con-
ditions. Attractive features of this system include the ease
of de-gelling process and retrieval of cells, transparency
enabling for optical and fluorescence examination, their

desirable porous network, and their limited inherent cell
adhesion making them of interest for cell encapsulation
and cell cultivation applications.’!$297-101  Alginate
hydrogel properties such as desirable nutrient release,
oxygen diffusivity, hydrophilicity, and antioxidant activ-
ity give them the potential to enhance cell survival and
support their further proliferation. Jalayeri et al. investi-
gated the biocompatibility of alginate, encapsulating
mouse spermatogonial stem cells. These hydrogels have
demonstrated the decrease of apoptosis-related gene
expression including Caspase3, BAX, P53, Bcl2, and
FAS with no membrane disruption of spermatogonial
cells, showing the non-toxic composition of these
scaffolds.®!

Alginate is also capable of attenuating the toxicity
induced by freezing during cryopreservation.'> Poels
et al. encapsulated mouse testicular tissue fragments into
scaffolds made of VEGF-loaded NPs/alginate and VEGF-
loaded NPs/fibrin hydrogels. The follow-up histological
and immunohistochemical analysis of scaffolds engrafted
into male NMRI mice testis indicated the improvement in
spermatogonial recovery of cryopreserved tissue engraft-
ments and vascular density.”” The pluripotency capacity
maintenance of cells during storage is a critical issue that
deserves to be taken into consideration during develop-
ment of cell-therapeutic protocols.'®® Alginate-based
hydrogels are one of the best currently available choices
for cryopreservation of transplantable SSCs and embry-
onic cells both to preserve their pluripotency, and for
encapsulation and protection of these cells to enhance sur-
vival during freeze-thaw cycles and a promising microen-
vironment for the maintenance of animal spermatozoa
motility during cryopreservation without compromising
their functional integrity.$>%%% Interestingly, encapsula-
tion of semen and bovine spermatozoa in alginate, solely,
or in combination with other ions such as calcium, could
cause prolongation of the preservation and allowed their
release, 04106

Pirnia et al. used the alginate hydrogel system for
encapsulation of mouse spermatogonial stem cells during
the cryopreservation process. The paper provides an in-
depth comparison between the stemness status, coloniza-
tion potential, and viability percentage of SSCs before
and after freeze-thaw cycles. The average diameter of the
alginate beads was 3mm and the encapsulation of these
cells in hydrogel beads caused elevation of two markers
levels for SSCs (Lin28a and Sall4 stemness genes), while
the expression of other stemness markers such as Oct4,
Nanog, and PLZF decreased, significantly. These results
also demonstrate that no differentiation could be observed
from freeze-thaw cycles themselves. The restoration of
spermatogenesis was also successfully achieved, with
characterization relying on histological staining and gene
marker assessment after cryopreservation at cell-culture
substrates.®?
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It is worth noting that the differentiation processes of
SSCs occur in the basal layer. Cells dwelling in this layer
develop interactions through integrins (as a class of cell
surface receptor) with the basal layer matrix, in which pro-
teins with Arg-Gly-Asp (RGD) peptide sequence play a
prominent role in regulating their binding.'?”-!% Thus, the
inclusion of RGD peptides in the structure of hydrogels is
routinely used to simulate the interactions in basement
membranes and has the potential to engineer and regulate
the proliferation and differentiation of SSCs. Alginate,
with the ability to be conjugated with oligopeptides, suc-
cessfully prepared a hydrogel matrix for function modula-
tions of a broad array of stem cells, especially SSCs.!%8

In addition to the aforementioned achievements on gel
matrices for 3D culturing, ex vivo culturing SSCs has also
been investigated. Hydrogel-based 3D microenviron-
ments, in part, could allow spermatogenetic processes by
providing a milieu for testicular cells similar to in vivo
conditions. To achieve complete human and rat spermato-
genesis, hydrogel-based bioreactors (formed from chi-
tosan) have been introduced.® These bioreactors were
comprised of a hollow cylinder of chitosan and were uti-
lized for the prolonged culture of testicular tissue (specifi-
cally the seminiferous tubule) of either rat or human
subjects. Some important observations (according to the
morphology and gene markers such as Tpl, Tp2, Prm3,
Cx43) were reported ex vivo culture (until 60days) of
these tissues including completion of spermatogenesis
with the appearance of morphologically mature spermato-
zoa with an efficiency similar to that in tubule segments.
These and other observations make this design architec-
ture promising for clinical application to provide enough
spermatozoa for intracytoplasmic injection of sperm in
patients. To carry out a high throughput analysis of germ-
to-somatic cell associations, Alves-Lopes et al. generated
testicular organoids by encapsulation and cultivation of
rat primary testicular cells in microscale droplets called
the three-layer gradient system. This system consists of
three layers, where the intrinsic core was made out of cells
incorporated into Matrigel, and two external layers which
were formed from pure Matrigel. This system was
designed for in vitro mimicking germ-to-somatic cell
communications.®

Bioscaffold applications in male
fertility preservation

Biodegradable 3D scaffolds have emerged as potential
templates for regenerative medicine for reconstitution and
stimulation of different tissues.!® Conceptually, 3D trans-
plantable scaffolds are promising routes to prepare inter-
connected networks as niches for homeostasis of different
tissues and supporting the maintenance, recruitment, and
differentiation of isolated cells.””> One of the most impor-
tant benefits of 3D scaffolds is the provision of physical

and chemical signals suited for homing, proliferation, and
growth of cells. Several studies reported unambiguous
and direct evidence that suitable cell-cell interactions
could be obtained between spermatocytes and Sertoli
cells via these microenvironments leading to the forma-
tion and self-renewal of daughter cells.”>''® Some
mechanical characteristics of scaffolds such as stiffness,
pore size/porosity, and elasticity are highly dependent on
the specific synthesis conditions such as the concentration
of the preformed biomaterial, solvent system, or opera-
tional temperature.''?

Several synthetic and natural-based biomaterials have
been utilized for generation of these supportive culture
systems (Figure 2). In addition to these biomaterials, acel-
lular tissue matrices, obtained via decellularization tech-
niques, have been used in preparation of transplantable
scaffolds for reproductive applications''> and each
approach possesses specific advantages and applications
(Table 3). Natural-based polymers are valuable due to their
cytocompatibility and biologically-potent nature; many
synthetic mimics can be synthesized and their mechanical
and degradation properties are believed to be
well-controlled.!!3114

Decellularized scaffolds

Acellular tissue matrices, fabricated via decellularization
of different tissues or organs, are capable of keeping the
vital components, functional molecules, and growth fac-
tors of the ECM and their activities unchanged to a suffi-
cient extent to provide integrity for cell growth.'> These
collagen-rich matrices with unique natural ultrastructure
can be provided from xenogeneic or allogeneic tissues.”’
The close similarity in the structure of specific organs
between humans and other animals such as monkeys or
pigs can support a huge supply of decellularized scaffolds
for tissue engineering. Removal of cellular components
and debris from the tissues can overcome potential toxic-
ity, diminishing their negative effects, and minimizing any
interference with the structural integrity.'>* While the bio-
activity of growth factors such as bFGF, TGF-B, and
VEGEF present within the scaffolds remains unaltered even
after prolonged preservations.'>> A variety of physical,
chemical, and even enzymatic decellularization protocols
have been introduced depending upon the tissue type, tis-
sue density, and biological properties.!'®!3* These scaf-
folds are commonly derived from tissues by immersing
them into appropriate detergents/solutions which are able
to disrupt the bonds between cells and the ECM and dis-
solve cellular materials and cellular debris (for instance:
sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic
acid (EDTA), sodium hypochlorite, and Triton
(X-100)).28.116:136 Decellularized testicular matrices offer
an ideal platform for growth and migration of testicular
cells. Although in these matrices, cells, DNA, bioactive
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testicular tissue extracellular matrix/alginate/gelatin

showed favorable cytocompatibility properties
with a uniform surface morphology and high SSCs

attachment.
Although in vitro sperm production was suggested by

means of this scaffold, spermatogenesis progression

Bioprinted scaffolds with a bio-ink made out of
was not investigated in this study.

Results

Progression stage of spermatogenesis

NA

Species
Mouse

Cell type
Spermatogonial cells
(3-7 day-old)

testicular tissue fragments in combination

with alginate—gelatin as bio-ink

3D printed scaffold using decellularized ram
Decellularization/bioprinter

Material/fabrication method

Table 3. (Continued)

Type

cellular proteins, and other materials with the potential to
interfere with the efficacy of culture should be removed,
while at the same time, the matrix should retain the main
components of testicular ECM. Collagens are believed to
be the most important components, especially for main-
taining the ECM integrity; laminins and fibronectin along
with collagens are well-established known as cell-adhe-
sion ligands and together with glycosaminoglycans
(GAGs) are vital for both attachment and migration of
cells.?®!1%121 Based on these requirements, the most recent
efforts on decellularization of testicular tissue have tried to
optimize the protocols by which decellularized tissue can
be obtained and achieve the highest levels of cell prolifera-
tion, and the most appropriate elements of the ECM struc-
ture and composition. The most effective protocols for
culturing Sertoli cells have utilized a serial combination of
SDS and Triton X100 (0.01%) in the decellularization step
to remove cellular materials from immature porcine tes-
ticular fragments.!'® Scaffolds produced in this way
showed promising potential to preserve the functionality
of other vital testicular cells (Leydig cells, Peritubular
myoid cells (PTMCs)), as well as SSCs.!"® Vermeulen
et al. decellularized the immature testicular tissue of pigs
and use it as a scaffold supporting human Sertoli cells
(SCs). The biocompatible natural scaffold increased pro-
liferation and functionality of cultured Sertoli cells. In this
study, the expression of GATA4 and vimentin by SCs cul-
tured on scaffolds was maintained until the end of the cul-
ture.!'® In the most recent attempt, organized testicular
organoids were generated in decellularized extracellular
matrix-based hydrogels to restore the fertility of males.
The prepared system had an appropriate storage modulus
(the capacity for energy storage in elastic deformation of
the material) for the porcine testicular organoid culture and
sufficiently simulated testicular ECM composition. The
prepared scaffold could form seminiferous tubule-like
structures and showed proper preservation of growth fac-
tors within organoids and potent regenerative capacity.'!”

Micro/nano-structured scaffolds

Different micro- and nano-structured bio-scaffolds from
biocompatible natural and synthetic polymers (i.e. NPs,
electrospun fibers, carbon nanotubes) have been success-
fully fabricated aiming to provide a niche for support,
attachment, and differentiation of spermatogenic cells and
for treatment of impaired spermatogenesis. Among the
synthetic polymers, poly (D, L-lactic-co-glycolic acid,;
PLGA) and poly(L-lactic acid; PLLA) have been fre-
quently used for production of porous scaffolds which are
compatible with tissue and cell culture.'?»12¢137 The ther-
moplastic nature of these polymers facilitates the forma-
tion of 3D scaffolds by various fabrication methods.
PLGA-based scaffolds are tissue-friendly giving no evi-
dence of malignancy or adverse effects on tissue or cell
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growth,'” likely because of their biocompatible and bio-
degradable nature. The degradation rate of typically used
biodegradable polymers ranges from weeks to several
years.!'? However, efforts have been made to modulate the
composition of these biomaterials to optimize the biodeg-
radability time profile, porosity, and maximize cell adher-
ence. The biodegradability of these scaffolds was found to
be higher at high proportions of glycolic acids to lactic
acids, while the other two parameters were not dependent
on the composition.'”!3 These scaffolds successfully
enhanced the survival of cells and induced spermatocytes
toward formation of elongated spermatids. The large sur-
face area of PLGA makes these scaffolds supportive and
adherent, allowing stable attachment and spreading of
cells, while their macroporous and well-interconnected
structure allows nutrients and oxygen to be readily trans-
ported via the pores. PLLA nanofibrous scaffolds in com-
bination with glial cell line-derived neurotrophic factor
(GDNF 10ng/ml) have been applied to maintain the clono-
genic and differentiation potential of mouse SSCs at high
levels referring to morphological assessments and sper-
matogonial genes expression analysis.'?* GDNF is believed
to be a key factor for balancing self-renewal and differen-
tiation of SSCs and promoting the survival of these
cells.!31%0 Cell seeding on such scaffolds fabricated by
electrospinning approaches caused a significant increase
in the formation of cell clusters and a decrease in cell clus-
ter size, respectively. The subsequent transplantation of
these cultured cells into a mouse busulfan azoospermic
model evidently revealed the homing of these cells to the
basal membrane of tubules.'**

Interestingly, using biocompatible polymers in combi-
nation with carbon nanotubes, a favorable supportive
architecture can be obtained for growth, renewal, and dif-
ferentiation of different cells.'3” Carbon nanotubes have
exhibited an exquisite capability for the adsorption of
serum proteins and promote adherence, spreading, and
growth of cells.'?? Unlike most other nano-scaffolds, the
cytotoxic effect of carbon nanotubes has remained a pri-
mary concern.'*! However, the direct binding of ECM pro-
teins onto the nanotube surface potentially increases the
biocompatibility of scaffolds and facilitates the adherence
of cultured cells to the surface.'??> Regardless of their pos-
sible cytotoxic effect (which could be overcome by absorb-
ing serum proteins prior to cell culture'*? or purifying
scaffolds after removal of toxic metal traces'*), carbon
nanotubes can provide bio-inert supportive substrates for
spermatogonial maintenance, preservation, and growth of
SSCs in vitro even for long-term applications. The cell
growth and survival persistence for the spermatogonial
cells isolated from buffalo calves testis were observed
even after a prolonged culturing period (21days).'?
Recently, it was revealed that carbon nanotubes incorpo-
rated into electrospun nanofibers could affect the spermat-
ogonial stem cells’ fate determination. Incorporation of

multi-wall carbon nanotubes (MWCNTs) in PLLA
nanofibers improves the conductivity and mechanical
strength of nanofibrous structures and more importantly
can enhance the propagation and differentiation of mouse
SSCs which were detected by histological, morphological
evaluation, and associated gene markers invetigation.'*

Electrospun 3D scaffolds are known to be highly
favorable for cell seeding, because they are thought to be
more morphologically and structurally similar to ECM,
compared to those synthesized by other approac
hes.!23127:128.144 The effect of surface topography of these
scaffolds on expansion of testicular cells has thus far not
been reported. Fibrillar electrospun scaffolds have been
reported to provide appropriate interactions mimicking the
ECM and promoting appropriate migration and morpho-
logical alterations.'**>  Such nano-surfaces have
improved the paracrine secretions from Sertoli cells, mod-
ulated the expression of genes participating in ECM for-
mation, promoted the functionality of signaling molecules,
and maintained the stemness of spermatogonial stem-like
cells, 125:128,129,144

In 2020, Kashani et al. found that PVA in combination
with agar (agar/PVA electrospun nanofibers) can poten-
tially promote differentiation of spermatogonial stem-like
cells without showing significant loss throughout the ini-
tial stage of cell culture. Unlike agar-based hydrogels, the
prepared electrospun scaffolds can offer a 3D culture sys-
tem for spermatogonial stem-like cells, in which the via-
bility of spermatogenetic cells is independent of Sertoli
cells. This testicular-like niche was found to be potent for
differentiation of mouse spermatogonial stem-like cells
into meiotic and post-meiotic cells (judged by measuring
the expression mRNA levels of corresponding markers),
thus can be taken into account as a promising tool for male
fertility preservation.'’® In another approach, Yadegar
et al. fabricated 3D human serum albumin (HSA) scaffolds
by incorporation of tri-calcium phosphate nanoparticles
(TCP NPs—50-100nm) and evaluated the viability of
mouse spermatogonial cells on this scaffold. Their results
showed that the increase of TCP concentration in HSA/
TCP NPs scaffold did not alter the cytotoxic effects of the
scaffold on mouse SSCs but longer incubation times
caused higher cell death.®®

Reproducing complex testicular compartments at the
microscale can be achieved by a new sophisticated
approach called “3D bioprinting.” Layer-by-layer deposi-
tion and patterning of biological materials via 3D bioprint-
ers can facilitate the in vitro establishment of testicular
organizations at a higher resolution.'3%14 3D cell-free/cell-
containing scaffolds could be fabricated by utilizing a
combination of synthetic or natural polymers to bear a
resemblance to the mechanical and biological properties of
testis tissue. Baert et al. recently printed cell-free (CF) and
cell-laden (CL) alginate-based scaffolds to explore their
impacts on in vitro spermatogenesis. Testicular cells (TC)
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of prepubertal mice were seeded on CF scaffolds (single-
cell compartment) while CL scaffolds (double cell com-
partment) contained juvenile mice driven CD49f*
interstitial cells. Although the native testis structure was
not recreated, employing these scaffolds, some post-mei-
otic cells including round and elongated spermatids were
observed (as revealed by specific histological and immu-
nohistochemical staining) on this new culture system (66%
of TC/CFS, 33% of CD49f*/CLS)."3!

Microfluidic systems for male
reproductive regeneration

There exist certain ethical and experimental limitations in
the availability of enough human-related resources, and in
the capability for long-time maintenance of tissues/organs
outside the body making human reproduction in vitro
research a challenging issue. In this regard, novel micro/
nanofabrication techniques such as microfluidics have the
potential to significantly enhance the efficacy of common
techniques in wet labs and clinics for male reproductive
regeneration. Microfluidics is defined as the technology of
designing, modeling, and fabrication of devices for han-
dling, manipulation, and analysis of small amount of flu-
ids.'¥” In the last decade, these systems attracted a
tremendous amount of attendance in biomedical applica-
tions such as drug discovery and development, !4 diag-
nostics,™® biosensors,'>! tissue engineering,'**!3  and
regenerative medicine.!**!15 The polydimethylsiloxane
(PDMS)-made microfluidic devices can be designed and
fabricated in different patterns for various applications.
These transparent gas-permeable systems allow monitor-
ing using various microscopy techniques, microelectrome-
chanical systems, and sensors and can be connected to the
different programmable valves and pumps.

Microscale fluidic devices are introducing new genera-
tions of technologies for the research, diagnosis, and thera-
peutic applications in male and female reproductive
disorders.!3®!57 Separation and imaging of gonad cells,
investigation of the basic biology of sexual stem cells, and
proliferation and differentiation of spermatogonial cells
are some applications of these systems in reproductive
biology and medicine.!>®

The complex physiological and tubular organizations
of primate testis along with the intricate endocrine regula-
tion hinders in vitro spermatogenesis.'>® Microfluidic sys-
tems can help reproductive researchers to remove some of
the barriers such as testicular cells death, limited access to
primary testis cells, and lack of novel tools to mimic com-
plexity and functionality of native tissue to successful tes-
tis tissue engineering.'®® A close relationship between the
testis function and fluid dynamics within the testis has
been proved which impacts both testis structure and fluid
dynamics.!®1162 Sertoli cells play a key role in the secre-
tion of fluid inside the seminiferous tubules which then

flows toward the rete testis while the steroid and protein
concentrations and ionic components are changed.'®* Fluid
flow in microfluidic systems has specific microscopic
behaviors that can mimic the fluid dynamic properties of
testicular tissue microenvironments for recapitulation of
functional testicular organogenesis and spermatogenesis
outside of the body.

The dynamic condition and behavior of fluids in differ-
ent tissues are entirely different from traditional culture
flasks.'® In vivo, blood, intercellular fluids, and lymph
provide support in all tissues by exchanging gases, hor-
mones, signals, immunologic agents, and proteins based on
fluid dynamic principles at the microscale. In this compli-
cated fluid network, especially inside tissue structures,
molecules are usually exchanged via diffusion, not by tem-
perature or pressure-induced flows. By contrast, cells in
culture flasks are in contact with huge volumes of cell cul-
ture medium where the mixing mechanism is not merely
diffusion, taking the conditions away from the biologically
relevant ones. Here, microfluidics as a technology has the
potential to contribute control of microscale and mimetic
flows.!%> Accurately controlling and monitoring the fluid
behavior in microfluidic channels assists scientists to
develop novel microfluidic devices for the isolation of
motile sperm cells from non-motile ones. ! It is anticipated
that microfluidic devices can do sperm-gender isolation
due to the intrinsic behavior of sperm cells in microscale.

The culture of limited primary testis cells from patients
is the other barrier in male reproductive system regenera-
tion that can be solved using open microfluidic cell culture
systems. These systems provide biologists with microenvi-
ronments that contain channels with air-liquid interfaces
and reduce the risk of cell death and loss of cells due to the
handling of the material during experiments. Importantly,
this equipment as an advanced version of organ culture
allows the study of small liquid volumes and culture of low
cell numbers which are well-matched for use with rare pri-
mary cells such as germ cells. Komeya et al. cultured neo-
natal mouse testis tissue fragments in a simple microfluidic
device. The fabricated microfluidic system was in a simple
pattern and was able to maintain spermatogenesis and
endocrine function of tissues for 6 months. Their device
separated testis tissues and flowing medium using a thin
porous membrane while the culture medium flowed in
channels with the same conditions of a capillary vessel.
This device also enhanced the induction of spermatogene-
sis compared to conventional interphase methods!'®” (Figure
3(d)). The pumping of medium toward cells directly inside
microfluidic systems can be harmful to the cells or tissue.
To remove the mentioned challenge, the same group in
2017, reported successful induction and maintenance of
mouse spermatogenesis for 3 months using a hydrostatic
pressure and a resistance circuit. This pumpless system
enabled a slow, longer-lasting medium flow for the nutri-
tion of Acr-GFP transgenic mice testis.!®®
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The low efficiency and limited duration of in vitro sper-
matogenesis during common in vitro studies are big chal-
lenges in testis regeneration. The microfluidic technology
can provide the researchers in this area with desirable cul-
ture conditions that mimic the testis tissue microenviron-
ment. Yamanaka et al. designed and fabricated a monolayer
microfluidic device as a testis organ culture system. This
device induced mouse spermatogenesis successfully and

maintained it for 15 weeks which is a significantly longer
period than the conventional culture methods. This system
is designed in a way that tissue can obtain nutrients from
the medium in adjacent microfluidic channels and oxygen
through the bulk PDMS (Figure 3(f)). In that work, testis
tissue of Acr-GFP transgenic mouse was cultured and mor-
phological changes of the acrosome during spermatogen-
esis were observed.'®’
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Another major challenge of in vitro organ culture is the
induction of central degeneration (necrosis) which is asso-
ciated with inadequate permeation of oxygen and nutrients
to the inner parts of the testis tissue. This issue signifi-
cantly decreases the function and growth of cultured tis-
sues. To overcome this issue, Kojima et al. seeded the
neonatal mouse testis on an agarose gel molded into a disk
shape by placing a ceiling of a microfluidic chip. The
PDMS on the surface of the hydrogel is highly oxygen per-
meable and supports oxygen transport for the tissue layer
and could prevent central necrosis and increase the growth
of cells during 7days.®® In follow-up work in 2019,
Komeya et al. placed the immature mouse testis tissues on
agarose gel blocks and forced them to be spread as a mon-
olayer using a microfluidic ceiling system. They observed
that the presence of the PDMS microfluidic device chip
elevated the initiation and maintenance of spermatogene-
sis, following by increasing the number of meiotic germ
cells, and enhancing the spermatogenesis up to round/
elongating spermatids which were confirmed by immuno-
histochemical evaluation'”' (Table 4).

Bioreactor application in male fertility
preservation

Bioreactors are a class of instruments which use mechani-
cal elements to influence biological processes such as cell
culture but at a large scale. Different kinds of bioreactors
have been introduced, including stirred suspension biore-
actors (SSB) which were introduced about 70 years ago for
cell culture in controlled environments. Deores et al.!”
developed a novel stirred suspension bioreactor for stem
cell enrichment from undifferentiated spermatogonial cells
using the adhesive properties of Sertoli cells from a mixed
cell population prepared from pre-pubertal porcine testes
in 2015 (Figure 3(g)). Thereafter, the stirred suspension
bioreactors have been used for the enrichment of undif-
ferentiated germ cells (obtained from 1-week-old pigs)
using the adherent properties of somatic cells'’? (Table 4).

Future outlook

Spermatogenesis in vivo is a sensitive and complex bio-
logical process regulating by the endocrine system, and the
microenvironment in the testis of different species is tuned
for maximum productivity. Offering functional solutions
to address male infertility treatment is a challenging yet
crucial task for modern reproductive biology. Microfluidics
and nanotechnology can pave the way toward the next
generation of devices for infertility treatment due to their
intrinsic advantages. These devices are functional with a
low sample volume, for example, semen samples; thus,
they can be ideal candidates for human reproduction
research areas. So far, various devices have been proposed
for sperm separation and selection and separation of motile

and viable sperms from non-motile ones. Some of these
devices are only based on the separation of sperms cells
from other cells like debris, RBCs, or WBCs. Others con-
sider the separation of motile sperm cells with high DNA
integrity from other components. However, the overall
yields in these devices are low, and some alternatives
should be found to address this issue. Moreover, the com-
bination of motility, thermal gradient, and PH variation of
the carrier fluid in the selection of sperm cells can per-
fectly mimic the ideal situation of natural sperm selection.
Advances in additive manufacturing also hold the promise
of developing novel microfluidic channels similar to the
3D structure of female reproductive systems to better
understand the mechanism of sperm selection in the human
body. The addition of some active forces, including acous-
tic force, to these devices can increase the separation reso-
lution of sperm cells; however, the degree to which these
forces affect the sperm cells and their DNA must be criti-
cally evaluated.

It would be anticipated that home-based semen testing
will improve significantly due to the enormous advance-
ment of point of care devices during the COVID-19 pan-
demic. Since men wusually are not in favor of
laboratory-based semen experiments and analyses, the
development of paper strips for semen analysis, similar to
those for pregnancy tests or glucose meter, is recom-
mended. The current commercially available semen tests
measure sperm motility. Some other important factors
such as DNA fragmentation index or sperm morphology
analysis must also be added to the output results of these
devices. Home-based semen analyzers are either qualita-
tive or quantitative. The qualitative ones are based on vis-
ual detection; thus, they are prone to human error. On the
other hand, quantitative ones require exact measurement,
which is not preferable for non-expert users. Therefore, the
interface of these analyzers must be improved.

New options for fertility preservation are emerging;
among these, sperm cryopreservation is a viable option.
However, sperm cryopreservation often results in increased
DNA fragmentation index, damage of mitochondria, and
reduced motility post-thaw. Therefore, it is anticipated that
novel methods of sperm cryopreservation be developed to
address all these issues mentioned above and increase their
efficiency. Creating droplets of frozen sperm cells with
high motility, viability with intact DNA fragmentation
index can ideally be the next generation of sperm parcels
ready for defrosting and use.

Beyond spermatogenesis and male fertility preserva-
tion, there will be an increased focus on technologies for
reproductive tissue replacement or repair to address the
significant challenge of providing endocrine function for
future generations. The use of 3D culture systems to
replace 2D techniques has demonstrated significant poten-
tial for the treatment of male infertility. Such 3D microen-
vironments are promising since they can mimic ECM
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conditions and provide a suitable environment for cell pro-
liferation and differentiation. Nevertheless, the absence of
circulatory systems in 3D microenvironments is consid-
ered one of the main drawbacks of these systems. Recently,
organ-on-a-chip models have progressed significantly. The
development of a novel organ-on-a-chip model can meet
these demands by creating a dynamic situation, that is, cir-
culation of gas and nutrients in the system in a controlled
manner similar to those in the respective organ or tissue.
Hence, the use of these systems might enable the potential
of spermatogonial cells for successful maturation and
sperm generation in the testicular tissue.

A specific example of a future application of advanced
bioengineering of male germ cells is highlighted in Figure 1.
Chemotherapy-induced male infertility for prepubertal boys
could be addressed using state-of-the-art in vitro environ-
ments for the growth and maturation of testicular cells, iso-
lated, and cryopreserved from patients prior to chemotherapy.
Later on demand and selection of functional sperms from a
pool of in vitro generated sperms by microfluidic systems
for use to fertilize eggs by means of different ART tech-
niques could provide one route to give healthy offspring. A
second route could be the fabrication of cellular-based or
cellular-free testis scaffolds with the same size and structure
of the normal and functional tissue using 3D bioprinters for
the case of prepubertal boys undergoing chemotherapy (or
for other conditions of male infertility) restoring testis tissue
function as adult males (Figure 1).
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