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Abstract

Immunotherapies have shown long-lasting and unparalleled
responses for cancer patients compared to conventional therapy.
However, they seem to only be effective in a subset of patients.
Therefore, it has become evident that a greater understanding of the
tumor microenvironment (TME) is required to understand the
nuances which may be at play for a favorable outcome to therapy.
The immune contexture of the TME is an important factor in
dictating how well a tumor may respond to immune checkpoint
inhibitors. While traditional immunohistochemistry techniques allow
for the profiling of cells in the tumor, this is often lost when tumors
are analysed using bulk tissue genomic approaches. Moreover, the
actual cellular proportions, cellular heterogeneity and deeper spatial
distribution are lacking in characterisation. Advances in tissue
interrogation technologies have given rise to spatially resolved
characterisation of the TME. This review aims to provide an overview
of the current methodologies that are used to profile the TME, which
may provide insights into the immunopathology associated with a
favorable outcome to immunotherapy.

Keywords: digital spatial profiling, immunotherapy, spatial
profiling, tumor microenvironment

INTRODUCTION

Immune checkpoint inhibitors (ICIs) are a form of
immunotherapy and have offered long-lasting
and durable benefits to a number of tumor types
including melanoma, bladder, head and neck and

lung cancer.1 However, ICI therapy only appears
to benefit a subset of patients. Therefore, there is
an unmet clinical need to identify biomarkers
predictive of outcome to therapy. It is thought
that a greater understanding of the immune
contexture (cell type, density, function) in the
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tumor microenvironment (TME) may shed light
upon tissue activation and immune recognition,
which in turn may be used to predict response to
therapy.2 The TME encloses the cell types and
vascularisation in forming the tumor, including
blood and lymphoid vessels, the extracellular
matrix, and immune infiltrates.1 As such, tumor
growth, invasion and resistance to therapy derive
from bidirectional interaction between the tumors
and the microenvironment.3 Therefore, having
knowledge of the co-evolution of tumors and
their immediate microenvironment in order to
understand the underlying tumor-immune cell
interactions, the degree of tumor cell recognition,
and the types of cells recruited into the
microenvironment is needed to develop more
effective therapies.4 The TME is composed of a
complex milieu of cell types.5 Bulk analysis of the
tumor either at the protein/transcript level is not
sufficient to capture a spatially resolved
representation of the TME.5 To address this,
advances in multiplex immunohistochemistry,
imaging and barcoding methodologies have led
to tools which enable the phenotyping of the
TME for composition, function, activity and spatial
location of cells.6 In this review, we will provide
an overview of the current TME biomarkers used
as predictive biomarkers of therapy and provide
insights into technologies which are able to
spatially map the TME.

PREDICTIVE BIOMARKERS OF
RESPONSE TO IMMUNOTHERAPY

In recent years, immunotherapies, in particular
ICIs, have been employed to reinvigorate anti-
tumor response and have changed clinical cancer
care.7 This was led by the humanised anti-
cytotoxic T lymphocyte antigen 4 (CTLA-4)
antibody ipilimumab in 2011, which has been
found to double 10-year survival for patients with
metastatic melanoma compared to conventional
therapies.8,9 Thereafter, blockade of another
checkpoint protein, programmed cell death 1
(PD1), or its ligand, PD1 ligand 1 (PD-L1), has been
shown to have even higher response rates and
lower incidence of side effects relative to anti-
CTLA-4.10,11 Tumor cells upregulate PD-L1 in order
to evade immune responses.12 PD-L1 expressed on
tumor cells interacts with its receptor PD-1 on T
cells to prevent T-cell activation.13 Therefore, the
expression of PD-L1 is a mechanism by which
tumor cells can inhibit T-cell immunity.14 The

United States Food and Drug Administration (US
FDA) has approved antibodies targeting the PD1–
PD-L1 axis as first-line or second-line therapies for
a number of cancers, including melanoma, lung
cancer, lymphoma, head and neck squamous cell
carcinoma (HNSCC), renal cell cancer (RCC), gastro-
oesophageal cancer, and liver cancer.15 While
promising, it appears that only some patients
benefit from this therapy. Therefore, there is a
need to develop predictive biomarkers of ICI
therapy, in order to personalise therapy to the
individual patient.

PD-L1 EXPRESSION

Programmed cell death 1-ligand 1 is assessed
using immunohistochemistry (IHC) and scored by a
pathologist.16,17 The US FDA has approved the IHC
assay for PD-L1 protein expression as a
companion/complementary diagnostic marker for
anti-PD-L1 therapy.16,17 As such, tumor PD-L1
expression has been known to be the most widely
used predictive biomarker of ICI response.18

However, the use of PD-L1 expression as a
predictive biomarker has been challenging
because PD-L1 has a dynamic level of
expression.19,20 The dynamic nature of PD-L1 is
further compounded by poor uniformity in PD-L1
IHC antibodies, variable cut-offs and tumor/
immune cell type levels of expression which
corresponds to benefit to therapy.14,21 Moreover,
it has been shown that the levels of PD-L1
expression are transient and change over time;
therefore, timing of the biopsy may be crucial
too.22 A number of studies have shown that the
expression of PD-L1 on tumor cells could be used
as a predictive marker,23,24 while others have
suggested that PD-L1 expression on tumor-
infiltrating immune cells, such as macrophages, is
more informative.18,25 A study by Rimm et al. in
triple-negative breast cancer (TNBC) treated with
a combination of immunotherapy (durvalumab)
and chemotherapy (the Impassion 130 and the
Keynote 522 trials) examined PD-L1 expression on
both tumor and immune cells.26 The findings
showed that patients with the pathologic
complete response (pCR) were shown to have
higher PD-L1 expression in tumor, stromal and
CD68 (macrophage) compartments compared to
patients with non-pCR.26 Therefore, a more
comprehensive characterisation of the immune
contexture is needed to gain insights into the
surrounding structures and cell types that are
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recruited into that area. This may give insights
into which patients respond to immunotherapy
more readily than a single marker expression such
as PD-L1.14 Therefore, the expression of PD-L1 on
both tumor cells and macrophages was associated
with the immunotherapy and chemotherapy
combination response.26

TUMOR MUTATIONAL BURDEN

Genomic aberrations including point mutation and
small insertion/deletion (indel) have been found to
generate neoantigens, which result in the
induction of the host immune response.27 The
assessment of the mutational landscape of the
tumor has been commonly termed ‘tumor
mutational burden’ (TMB).28 TMB is defined as the
number of somatic mutations per DNA megabase
(Mb) and is used as a genomic biomarker for the
identification of patients likely to respond to
immunotherapy.28 Studies have shown that
patients with high TMB are more likely to benefit
from immunotherapy agents due to the increased
rate of immunogenicity.29,30 The KEYNOTE-158
study recently reported that patients with TMB-
High (TMB-H), ≥ 10 mut Mb�1 (mutation/
megabase), had an improved overall survival
following treatment with pembrolizumab (anti-
PD1 antibody, KEYTRUDA), than those with a TMB
less than 10 mut Mb�1.30 This result was found in
patients across multiple tumor types, including
anal, biliary, cervical, endometrial, salivary,
thyroid, vulvar, mesothelioma, neuroendocrine
and small-cell lung cancer (SCLC). The study
showed that TMB-H patients with unresectable or
metastatic solid tumors could benefit from
KEYTRUDA, in a tissue agnostic manner.30

In addition to taking into account the quantity
of TMB, the quality of the mutations should also
be considered. This means that certain forms of
mutations are more likely to induce an immune
response. For instance, it has been found that
indel mutations could lead to higher
immunogenicity in comparison with missense
mutations.31 Clinical responses in patients with a
defect in the DNA mismatch repair mechanism
(MMR) have been reported to be associated with
the indel mutational load but not with the
missense mutation.31 Furthermore, studies have
shown that mutations in specific genes may result
in outcomes to immunotherapy.32 In patients with
mutations in the interferon-gamma receptor
(IFNGR) signalling pathway, such as tyrosine-

protein kinase JAK1 (JAK1), JAK2, and apelin
receptor (APLNR), have been shown to be
resistant to therapy.33 Moreover, it has been
demonstrated that specific human leukocyte
antigen (HLA-I) serotypes can have a significant
role in response to therapy.34 It has been found
that patients with HLA B44 and B62 serotypes
could benefit from ICI antibodies.34

Tumor mutational burden was originally
measured using whole-exome sequencing (WES),
and a number of studies reported an association
between WES-derived TMB and response to
ICIs.28,35 WES-derived TMB measurement requires
the matched normal sample can be time-
consuming to perform.36 Therefore, to overcome
this, next-generation sequencing (NGS)-based
panels that sequence a sufficient subset of the
exome have been developed for calculating
TMB.37–39 In addition to time and cost-effective
advantages, the targeted NGS panels take into
account both nonsynonymous and synonymous
base substitutions as well as short insertion/
deletion alterations.38 These inclusions for the
TMB measurement have led to an improved assay
sensitivity by increasing the number of qualifying
variants into the calculation.38 For this, there are
currently two FDA-approved NGS panels for
calculating TMB: the FoundationOne CDx and
MSK-IMPACT (Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable
Cancer Targets) panels.7 These panels have been
designed to detect a number of DNA alterations,
including point mutations, small and large
insertions/deletions, copy number variations, and
structural variants, in cancer-related genes.36

These assays have given insights into microsatellite
instability (MSI), loss of heterozygosity, and TMB.
Further studies are warranted to investigate the
role of TMB as a predictive biomarker and
harmonisation between NGS-based TMB assays.39

The project known as the Friends TMB
harmonisation project was designed to establish a
uniform approach for the measurement and
reporting of TMB across various sequencing
panels. The project consists of three phases, in
silico, empirical and clinical analyses.40 These
analyses use publicly available TCGA data, cells
derived from human tumors, and human FFPE
tumor samples, to harmonise the definition of
TMB and to ensure consistency in the calculation
of TMB through alignment with a universal
reference standard.40 The first two phases have
been completed. The in silico analysis has
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indicated that the higher WES-TMB value, the
greater the variability within and between panel
TMB values. Certain types of cancers, including
uterine, bladder and colon cancers, have shown
greater variability in panel TMB values relative to
others, such as lung and head and neck cancers.40

The empirical analysis has also shown that the
variability across laboratories tends to increase in
line with the increase in the WES-TMB values.
Finally, future studies (e.g. clinical analyses) will
focus on the use of samples from ICI-treated
patients to evaluate optimal cut-off values that
help guide the clinical application of TMB.

MICROSATELLITE INSTABILITY

Microsatellites (MSs) are short tandem DNA
sequences (usually 1–6 nucleotides long) repeated
throughout the genome.41 These sequences are
located in both genes and inter-gene regions,
often present in promoter, exons, introns and
untranslated terminal regions (UTRs).42 If the
repetition of these sequences changes, increases
or decreases, there will be MS instability. Such
errors are usually corrected by the DNA repair
mechanism known as the mismatch repair (MMR)
system.43 The MMR system consists of key proteins
such as MLH1, MSH2, PMS2 and MSH6; therefore,
mutations in any of these genes, either germline
or somatic, could cause a defect in the MMR
mechanism and termed ‘MMR deficiency’.44 MMR
deficiency contributes to the generation of many
indel mutations.45 A number of indel mutations
may lead to frameshifts in the DNA sequences
that produce neoantigens with more
immunogenic characteristics.7 It has been shown
that MSI-positive tumors, such as colorectal
cancers (CRCs), are highly CD8+ T cell infiltrated
compared with microsatellite stable
counterparts.46 This finding could explain as to
why MSI-positive tumors show high objective
response rates to ICIs.7 Pembrolizumab has been
approved by the FDA for the treatment of MSI-
high/MMR-deficient tumors. There are currently
two approaches to detecting MSI-high and MMR-
deficient tumors in clinics, polymerase chain
reaction (PCR) and IHC.47 Although MSI-high has
been reported in multiple solid tumors, it varies
across different types of tumors.48 CRC,
endometrial and gastric cancers have the highest
frequencies (> 10%), while glioblastomas,
oesophageal cancer, breast cancer and non-small-
cell lung cancer (NSCLC) have the lowest

frequencies (< 2%).48 Thus, despite the fact that
MSI can enhance neoantigen load and induce a
better response to ICIs, its low frequencies in
human tumors restrict its application to
immunotherapy as a broad-based predictive
biomarker.49

TUMOR MICROENVIRONMENT

The TME is known to play a key role in the
initiation and progression of cancer.4,50 There are
a variety of host immune cells recruited within the
TME. These include cells that are involved in both
the innate and adaptive immune responses.51

which may act as a tumor promoter, and some
may suppress the tumor.52 Thus, the immune
contexture, that is the type, density and location
of cells in the TME, could be useful to understand
the underlying biology associated with a
favorable treatment outcomes.4 Immune
infiltration of tumors is classified as immune-
inflamed, immune-excluded, and immune-desert.7

The immune-inflamed is when there are CD3+ and
CD8+ T cells in the tumor regions and the invasive
margin, while an immune-desert represents a low
density of both cell types in both regions.53 The
immune-excluded phenotype reflects the presence
of T cells at the invasive margin without the
ability to infiltrate the tumor.53 It has been shown
that the inflamed TME is usually accompanied by
the expression of immune checkpoint proteins
such as PD-L1 on infiltrating immune cells (e.g.
macrophages) and tumor cells, suggesting that
these types of tumors have pre-existing anti-
tumor immune responses.54 Tumors with this type
of TME are therefore more likely to respond to
PD-1/PD-L1 blockade.55 This function allows for
inflammatory gene signatures such as IFN- c
signalling genes to be used as ICI biomarkers to
select appropriate patients for therapy.56

Moreover, studies have reported that the
presence of transforming growth factor-b (TGF-b)
signalling pathway can contribute to the exclusion
of CD8+ T cells from the tumor parenchyma.57

Blocking the TGF-b signalling pathway could have
the potential to convert the TME to a more
inflamed state and make it more susceptible to
ICIs.57

TERTIARY LYMPHOID STRUCTURES

For an anti-cancer immune response to generate
efficiently, dendritic cells (DCs) are required to
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migrate from the tumor site to secondary
lymphoid organs (SLOs) and present major
histocompatibility complex (MHC) molecule–
peptide antigen complexes to CD4+ and CD8+ T
cells.58–61 Within the follicles of SLOs, B cells are
also activated and undergo proliferation, isotype
switching, and somatic hypermutation.62

Recognition of antigens presented by DCs and
receiving co-stimulating signals provided by the
CD4+ T cells are required for this.62 This results in
the proliferation and differentiation of
lymphocytes to effector T cells and memory B
cells, which eventually infiltrate the tumor mass
and kill the tumor cells.63 The generation and
regulation of immune response to tumor cells not
only occur in SLOs but can also occur directly at
the tumor site, in tertiary lymphoid structures
(TLSs).63 TLS represents lymphoid neogenesis
caused by long-lasting exposure to inflammatory
signals mediated by chemokines and cytokines.64

TLS develops under the influence of various
pathophysiological conditions, such as
autoimmune diseases and cancer, and their
function is context-dependent.64 This structure is
also composed of a variety of immune cells,
including B and plasma cells, CD4+ and CD8+ T
cells, DCs, macrophages and neutrophils.65 TLS
provides the conditions for DCs to present
adjacent tumor antigens to T cells, activation,
proliferation and differentiation of B and T
cells.65As the density of TLS is associated with the
presence of CD4+ and CD8+ T cells in tumors, its
development is related to a favorable prognosis in
cancer patients.66 TLS can develop in the stroma,
invasive margins and the core of the tumor mass;
however, its abundance in stroma or invasive
margins is higher than the core of tumors.67

SPATIAL TUMOR MICROENVIRONMENT
PROFILING TECHNOLOGIES

Spatial and immunological composition with
cellular status can aid in identifying micro-niches
within the TME. The classification of the immune
context within the TME lays the foundation to
addressing how the immunological composition
and status (activated/suppressed) may dictate
response to therapy. Therefore, to address this
need, imaging and tissue sampling is required
simultaneously to analyse tumor tissue and
immune proteins with spatial resolution (Table 1).
Studies have demonstrated using multiplex
immunofluorescence that the proximity of

immune and tumor cells in the TME underlies the
response to anti-PD-1 targeted therapies.68

IMAGING MASS CYTOMETRY

Imaging mass cytometry (IMC) is a type of mass
cytometry combined with a novel laser ablation
system that quantifies the expression of multiple
markers with subcellular spatial resolution on a
single tissue section.69 IMC not only provides in situ
spatial information and antigen qualification but
can also be performed in both snap-frozen and
formalin-fixed paraffin-embedded (FFPE) tissue
sections.70 Therefore, IMC contributes to the
simultaneous characterisation of the composition of
the immune compartment, revealing the spatial
relationship between immune cells and stromal
cells, and demonstrating interactions among
immune subsets in tissue areas of preference.69

Unlike classical immunohistochemistry or
immunofluorescence techniques, which suffer from
background interference due to the use of a limited
number of markers, IMC takes advantage of rare
metals conjugated to antibodies to significantly
improve the multiplexing capacity.71 Tissue sections
are labelled with multiple antibodies conjugated to
stable isotopes and then ablated with a laser system
to create segments of 1 lm in diameter.71 When
inserted into the mass cytometer, atomised and
ionised, the metal-isotope content of each segment
is measured by the time-of-flight mass analyzer.70

Finally, the isotope abundance of each spot is used
to produce a high-dimensional image.70 In the study
by Ali et al., IMC was used to quantify protein
expression with subcellular resolution in multiple
tumor tissues to investigate the impact of somatic
alterations on the tumor ecosystems. Phenotypes
and cell–cell interactions were shown to be
associated with genomic subtypes of breast cancer,
with those expressing Ki67 and HER2 associated
with poorer outcomes.72 Aoki et al. used IMC to
characterise immune cell populations to generate
an immune cell atlas for the TME of Hodgkin
lymphoma (HL). A novel subtype of T cells with
expression of the inhibitory receptor lymphocyte
activation gene 3 protein (LAG3) was identified
which acted as a mediator of immunosuppression.
In the study, increased LAG3+ T cells were shown to
be in the direct vicinity of MHC class-II-deficient
tumor cells.73 Zhu et al. investigated ovarian cancer
patients using IMC to identify biomarkers of
immunotherapy response. In the study, the authors
found that the highest increase in CD8+ T cells and
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forkhead box protein P3 (FoxP3)+ cells was found in
patients responding to the combination of
durvalumab and tremelimumab.74

10X GENOMICS

Chromium single-cell gene expression

Analysis of cell-type variations in biological systems
is crucial to the understanding of the cellular
contribution to cancer progression.61 The
Chromium Single-cell Gene Expression Solution
with Feature Barcoding Technology (with Next
GEM technology) utilises both cell surface protein
detection and single-cell transcriptome readout.75

This technology takes advantage of antibodies

conjugated to DNA barcodes for single-cell
sequencing.76 Using Feature Barcoding technology,
it would be plausible to analyse multiple markers in
a single assay.76 These characteristics improve the
resolution of the cell type, therefore, leading to
the detection of rare cell types, and the discovery
of more unique transcripts all in a single assay at
single-cell resolution.75 Andor et al.77 used the 10x
Chromium to obtain single-cell transcriptomes of
follicular lymphoma (FL). The study found that
malignant B cells exhibited a downregulation of
the FCER2, CD52 and MHC class II genes. T cells in
the FL tumors expressed high levels of immune
checkpoint genes.77 Additionally, Zhang et al.78

used 10x Chromium to characterise a single-cell
profile of early gastric cancer (EGC). A panel of

Table 1. Overview and comparison of spatial transcriptomics profiling technologies

Technology Sample type Resolution Approach Analyte Advantages/Disadvantages

Imaging Mass

Spec (IMC)

• Fresh-frozen

• FFPE

• Cellular

• Subcellular

Metal-based • Peptides

• Protein

Pros:

• Molecular analysis retaining spatial

distribution of analytes, 2D distribution

maps for each mass measured

Cons:

• Sample preparation, low throughput,

data processing and analysis

10x Chromium • Fresh-frozen Cellular Barcoded Gel Beads • RNA Pros:

• Whole transcriptome

Cons:

• No spatial resolution

10x Visium • Fresh-frozen • Anatomical

features of 100

µm/55 µm

• Cellular

Barcoded mRNA

capture spots

• RNA Pros:

• Whole transcriptome

Cons:

• Barcoded regions contain multiple cells

CODEX • Fresh-frozen

• FFPE

• Cellular DNA-barcoding-based • Protein Pros:

• Allows the analysis up to 40 proteins,

spatial and single-cell resolution.

Cons:

• Whole slide can be time-consuming/

costly

NanoString

GeoMX DSP

• Fresh-frozen

• FFPE

• Custom down

to 10 µm

• Cellular

DNA-barcoding-based • RNA

• Protein

Pros:

• 96–20000 mRNA detection (whole

transcriptome)

• High level of automation

Cons:

• No image reconstruction

• Requires manual choice of regions

Ultivue • Fresh-frozen

• FFPE

• Cellular

• Subcellular

DNA-barcoding-based • Protein Pros:

• Whole-slide multiplexing and imaging

• Rapid and automated workflow

Cons:

• No slide scanner
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EGC-specific signature with clinical implications for
the diagnosis of EGC was identified.78 This panel
consisted of the genes in kallikrein-10 (KLK10),
natural resistance-associated macrophage protein 2
(SLC11A2), sulfotransferase 2B1 (SULT2B1),
kallikrein-7 (KLK7), extracellular matrix protein 1
(ECM1) and LMTK3.78

Visium spatial gene expression

The Visium Spatial Gene Expression solution is
used to measure transcripts and gene expression
across a tissue section.79 The Visium technology
has the ability to be combined with
immunofluorescence in order to visualise protein
and gene expression at the same time.5 The
technology is compatible with fresh-frozen
samples from most tissue types and uses
thousands of barcoded mRNA capture spots to
visualise gene expression with both whole
transcriptome analysis and targeted gene
expression panels.79 Visium provides insights into
the relationship between cell function, phenotype
and location in tissue microenvironments by
preserving the spatial context of tissues along
with the identification of distinct groups of cells.5

Such technology could, therefore, provide clinical
applications, including insight into tumor
heterogeneity and tissue morphology,
identification of response to therapeutic
interventions, and discovery of biomarkers.79 In
the study by Ji Al et al., Visium was used to define
the cellular composition and architecture of
cutaneous squamous cell carcinoma (cSCC). It was
shown that among multiple cell types in the cSCC,
tumor-specific keratinocytes (TSKs) acted as a hub
for intercellular communication. TSKs were also
found to reside within a fibrovascular niche at
leading edges.80 Moreover, the study found that
TSK, basal and adjacent stromal and immune cell
types exhibited invasive and immunosuppressive
characteristics associated with physical proximity
and distinct sets of ligands and receptors.80

CO-DETECTION BY ANTIBODY
INDEXING (CODEX, AKOYA
BIOSCIENCES)

CO-Detection by antibody indEXing (CODEX, Akoya
Biosciences, Menlo Park, CA, USA) is a type of
multiplex fluorescence microscopy platform using
DNA-conjugated antibodies that allows analysis of
up to 40 targets in a single tissue section. The CODEX

platform can recognise single cells in their tissue, as
well as discover novel cell types and cell–cell
interactions.81 Unlike other cyclic
immunofluorescence (CycIF) approaches which have
several antibody staining and stripping steps, the
CODEX platform employs a single initial staining
step and subsequent manipulation of tissues,
resulting in a rapid workflow and preventing tissue
degradation. Using complementary fluorescent DNA
probes, DNA-conjugated antibodies are made
visible, accompanied by imaging, probe stripping,
washing and re-rendering. Phillips et al. used the
CODEX platform to evaluate the response to
immunotherapy in cutaneous T-cell lymphoma
(CTCL). In patients who responded to
pembrolizumab, the effector-type cellular
neighbourhoods (CNs), including a tumor/DC CN and
a tumor/CD4+ T-cell CN, were significantly increased,
while in non-responder an immunosuppressive-type
CN enriched in regulatory T cells was significantly
increased following treatment. Sch€urch et al.82

identified spatially nuanced interactions between
components of the immune TME. Nine conserved,
distinct CNs were identified in colorectal cancer
(CRC) TME. Enrichment of PD-1+CD4+ T cells only
within a granulocyte CN had a positive correlation
with survival in a high-risk patient subset.84 Worse
outcomes were associated with the combination of
tumor and immune CNs, fragmentation of T cell and
macrophage CNs, and disruption of inter-CN
communication.82

NANOSTRING GEOMXTM DIGITAL
SPATIAL PROFILER

The NanoString GeoMxTM Digital Spatial Profiler
(DSP) with digital colour-coded ‘barcodes’ is
capable of detecting and quantifying protein and
mRNA at significantly higher multiplex manner
(40–100 protein and to 96–18 000 mRNA targets)
from fixed and fresh-frozen tissues with spatial
resolution (Figure 1).83 Compared to other multi-
colour IHC techniques, the DSP retains tissue
structure without degrading samples because as
the UV-photocleavable signal is liberated and
counted, without the need for chemical
stripping.83 The DSP has recently been used in
multiple tumor types, such as melanoma, non-
small-cell lung cancer (NSCLC), and renal cell
carcinoma (RCC).84 Rimm et al. utilised the DSP
technology to identify biomarkers associated with
outcome to therapy in melanoma. They found
that CD8, CD3, TIM3, HLADR, IDO1 and CD11c in
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tumor regions were associated with a favorable
progression-free survival (PFS). In patients with
CD8, B2M, PD-L1 and TIM3 present in
macrophages and B2M in lymphocytes, had a
better PFS.18 Monkman et al. characterised the
TME of non-small-cell lung cancer (NSCLC). The
study compared the TME and normal adjacent
tissue (NAT) revealing that several proteins
including CD34, fibronectin, IDO1, LAG3, arginase-
1 (ARG1) and PTEN were downregulated in TME
relative to NAT. When the TME and tumor were
compared, the study showed that CD3, CD45RO,
V-domain Ig suppressor of T-cell activation
(VISTA), and CD163 were enriched in TME relative
to tumor.84 Wargo et al. showed a nine-gene
signature associated with tertiary lymphoid
structures (TLSs) in melanoma. The gene signature
included CD79B, CD1D, CCR6, linker for activation
of T-cell family member 1 (LAT), Src kinase-
associated phosphoprotein 1 (SKAP1), cholesteryl
ester transfer protein (CETP), eukaryotic

translation initiation factor 1A, Y-chromosomal
(EIF1AY), retinol-binding protein 5 (RBP5) and
prostaglandin-H2 D-isomerase (PTGDS).60 It was
also shown that T cells had a dysfunctional
molecular phenotype in tumors without TLS
structures.60 In another study, Wargo et al., in
tissue samples from patients with melanoma and
renal cell carcinoma (RCC), showed that the
density of CD20+ B cells and TLSs, as well as the
ratio of TLS to tumor area, was higher in
responders to immunotherapy than in non-
responders.59 In the responders, CD20+ B cells
were located in TLSs of tumors and were co-
localised with CD4+, CD8+ and FoxP3+ T cells.59

ULTIVUE

Multiplex IF assists visualisation of multiple
biomarkers simultaneously in tissue while
preserving the spatial context.85 Ultivue platform
uses InSituPlex DNA-barcoding and antibody

Figure 1. NanoString GeoMX Digital Spatial Profiler (DSP) workflow for interrogating multiple protein/RNA analytes from a single tissue section.

Analytes in the tissue sections are conjugated with oligo tags via photocleavable linkers. The user defines regions of interest (ROI) from an initial

visualisation to demarcate the tissue architecture. Then, spatially mapped UV illumination allows oligo tags to be released from the analyte into a

96-well plate. The collected oligos are then subject to standard NanoString counting/sequencing to obtain digital counts per ROI.
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staining technology to provide whole-slide
multiplexing for cell phenotyping in addition to
the spatial profiling of tissue biomarkers.
InSituPlex technology is capable of detecting
multiple markers on single cells, even in the same
cellular compartment.85 Markers can also be easily
detected in a wide range of cellular compartments
such as plasma membrane, cytoplasm and nucleus.
This contributes to accurate and in-depth
immunophenotyping in tissues through positive
detection of markers. InSituPlex technology
enhances the number of hybridisation sites for
imaging by using linear barcode amplification
while controlling different levels of expression
from marker-to-marker and cell-to-cell. This
technology uses a gentle staining method to
prevent the loss of integrity of the tissue sample.
The platform provides high-performance tissue
multiplexing as well as multiple biomarker co-
localisation and co-expression. Rimm et al., in
NSCLC, showed that across tumor cells and
multiple immune cells, the majority of PD-L1
expression co-localised with CD68+ cells.25 The
expression of PD-L1 in the macrophage
compartment, but not in the tumor cell
compartment, was also found to be associated
with overall survival.25 Bleck et al.86 used Ultivue
technology to capture complex immune cell
phenotypes in FFPE samples from colorectal cancer
(CRC) patients. The study found that hot CRC
tumors were found to have an increase in PD-L1+

CD68 cells relative to cold tumors. CD8+ T cells in
the cold tumors were also found to be further
away from the nearest PD-L1+ cells compared to
hot tumors.86 Moreover, Hutchinson et al.
employed Ultivue platform to evaluate spatial
immune infiltration patterns in CRC FFPE
samples.87 As a result, it was demonstrated that
high-TMB tumors had a higher mean area of
intraepithelial (IE) PD-L1 and CD8, while low-TMB
counterparts had a higher mean area of IE CD68.87

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The TME is derived from a complex set of various
cell types interacting with each other; however, it
is unclear how these interactions cause the tumor
cells to develop, proliferate and lead to
metastasis. Multiple factors, including tumor type,
tumor mutation burden, microsatellite instability,
tertiary lymphoid structures and immune cell

infiltration, have been shown to play a significant
role in the TME and in turn inform on the
response to immunotherapy. Consideration of the
relationship between both these patients’
intrinsic and tumor-dependent effects at various
levels will be critical to improving the efficacy of
existing immunotherapeutic approaches. As such,
a comprehensive and accurate understanding of
the factors involved in the heterogeneity of the
TME as well as the biological crosstalk of the
tumor–host interface is crucial in promoting
treatment strategies. To this end, multiplexed
sequencing and imaging platforms that provide
in situ and spatial information on various immune
and non-immune factors within the TME can
significantly advance this field. Characterisation of
the TME is a valuable method used for tumor
subclassification and predicting clinical outcomes.
Simultaneous quantification of multiple
biomarkers using multiplexed spatial TME
profiling technologies has become increasingly
important. Spatial profiling technologies can
provide comprehensive tissue, morphological,
protein/gene expression analysis and insights into
the tumor biology than has not been previously
possible. Enabling deeper insights into the tumor–
immune cell interactions and cellular interactions
at play which may inform on outcome to
immunotherapy.
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