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Abstract
Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical 
for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of 
actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibi-
tory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables 
neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have 
an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite 
growth in an inhibitory environment in the central nervous system.
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Introduction

Neuronal regeneration in the injured or diseased central 
nervous system (CNS) is limited due to a large range of 
intrinsic and extrinsic factors that inhibit the regrowth of 

neurites from injured neurons. Cytoskeletal reorganisation 
enables dynamic extension and exploration of neurites, 
which then form connections with other neurons (Acebes 
and Ferrus 2000). Extracellular cues, coupled with the reor-
ganisation of the actin cytoskeleton, drive the extension of 
neurites at the growth cone. Actin-associated protein tro-
pomyosin (Tpm) is a key regulator of neuritogenesis and 
neurite branching (Curthoys et al. 2014; Fath et al. 2010; 
Schevzov et al. 2005). In mammals, over 40 Tpm isoforms 
have been identified, arising from the alternative splicing 
of four different genes (Tpm1-4) [for review, see (Geeves 
et al. 2015)], with isoforms from three genes (Tpm1, Tpm3 
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and Tpm4) found to be expressed in neurons [for review, see 
(Schevzov et al. 2012) and (Brettle et al. 2016)]. Tpms form 
a coiled-coil dimer along the major α-helical groove of actin 
filaments, thereby regulating the access of other actin-bind-
ing proteins to the filament in an isoform-dependent manner 
[for review, see (Gunning et al. 2015)]. Tpm isoform Tpm3.1 
has long been associated with promoting neurite outgrowth 
and axonal extension (Schevzov et al. 2005, 2008; Wein-
berger et al. 1996; Fath et al. 2010). In particular, the over-
expression of human Tpm3.1 (hTpm3.1) results in enlarged 
growth cones (Schevzov et al. 2005), with increased actin 
polymer (Schevzov et al. 2008), an increase in the number 
of dendrites and increased axonal branching. The regula-
tion of neurite outgrowth by tropomyosins in an inhibitory 
substrate context has not yet been studied. In the current 
study, we investigate hTpm3.1 overexpression on neurite 
outgrowth in the presence of Nogo66. Myelin-associated 
inhibitor NogoA is a potent inhibitor of neurite outgrowth 
of central nervous system neurons (Chen et al. 2000). The 
small peptide sequence Nogo-66 of NogoA leads to neurite 
growth inhibition via signalling through the RhoA/ROCK 
pathway, modulating actin filament dynamics (Fournier et al. 
2003; Mi et al. 2004). The binding affinity of Nogo-66 to 
its receptors NgR1 and PirB has Kd values of 1.2 ± 0.4 and 
2.4 ± 0.6, respectively (Huebner et al. 2011). Nogo-66 pos-
sesses nanomolar potency for inhibiting growth cone col-
lapse and neurite growth with a reported median effective 
concentration  (EC50) of 50 nM (GrandPre et al. 2000). We 
have previously validated the use of recombinant Nogo-66 
for its use in studying neurite outgrowth inhibition in vitro, 
using mouse and human cortical neurons (An et al. 2016).

Microfluidic devices have increasingly been recognised 
for their potential in deciphering the function of nerve 
cells in the healthy, injured and ageing brain [for review, 
see (Osaki et al. 2017)]. Microfluidic devices have solved 
issues of difficulty in operation, costs of experiments and 
low throughput, by providing rapid and precise spatiotem-
poral control over the neuronsʼ microenvironment. Perhaps, 
one of the most promising applications of microfluidics in 
neuron research is investigating the mechanism of neuronal 
injury due to physical (Hosmane et al. 2011; Hellman et al. 
2010) or chemical stimuli (Li et al. 2012; Yang et al. 2009). 
However, many microfluidic devices compartmentalise axon 
outgrowth to predefined channel shapes. In addition, since 
axon outgrowth occurs inside the microchannels, studying 
the effect of substrate-bound cues is not possible. Here, we 
describe a new microfluidic device based on our previously 
developed system for studying cell–cell interactions (Has-
sanzadeh-Barforoushi et al. 2016). This novel device is fab-
ricated, using conventional soft-lithography method and can 
be simply operated with a standard hand-held pipette with no 
previous expertise. Using this device, we show for the first 
time that overexpression of hTpm3.1 overcomes the neurite 

outgrowth inhibition activity of the CNS-derived inhibitor 
NogoA.

Materials and Methods

See supporting information.

Results and Discussion

First we optimised the previously developed microfluidic 
device (Hassanzadeh-Barforoushi et al. 2016), characterised 
by intercalating channels, for the use of neurons, cultured 
at low density (Fath et al. 2009). We thereby established 
a microfluidic device-based assay, which allows rapid and 
precise patterning of neurons and an inhibitory substrate 
in an intercalating pattern (Fig. 1a–c). Neurite outgrowth 
was determined by measuring a straight line from the outer 
boundary of the plated cell layer to the tip of the growth 
cone (Fig. 1d). The distance from the edge of the plated 
cell layer to the GST-Nogo-66-coated region, also shown in 
(Fig. 1d), is 175 µm. GST-Nogo-66, injected into the device, 
adhered to the coverslip in the defined channel pattern, and 
was persistent over a 7-day period, as confirmed by measur-
ing of fluorescence intensity, after immunostaining with an 
antibody, directed against GST (Fig. 2a–c). By seeding a 
cortical support ring around the perimeter of the culture dish 
(Fath et al. 2009), the hippocampal neurons plated onto the 
centre of the coverslip in the pattern dictated by the micro-
fluidic device remain viable, as measured at 3 and 7 DIV 
(Fig. 2d–l). At 3 DIV, 93.8 ± 1.1% were alive with support 
ring versus 43.3 ± 5.8% without support ring and at 7 DIV, 
90.5 ± 1.7% were alive with support ring versus 34 ± 10.1% 
without support ring.

To determine the optimal time point for analysis of neur-
ite growth behaviour, as neurites encounter the GST-Nogo-
66-coated area, neurons were fixed at time points from 2 to 7 
days in vitro (DIV) (Fig. 2m–s) and measured as mentioned 
above (Fig. 1d). Neurite outgrowth was found to reach the 
GST-Nogo-66 region between 4 DIV and 5 DIV (Fig. 2s). 
Therefore, live-imaging analysis of neurite outgrowth behav-
iour was analysed over a 24-h time period from 4 DIV to 5 
DIV.

Neurite growth rates of wild-type and hTpm3.1-overex-
pressing neurons were measured in the growth-permissive 
area (labelled − 2 and − 3, Fig. 3a) and the GST-Nogo-66 
region (labelled − 1 and 1, Fig. 3a). Our data show that the 
overexpression of hTpm3.1 significantly slows the rate of 
neurite outgrowth from 0.85 ± 0.07 to 0.57 ± 0.05 µm/min 
(Fig. 3b). However, while neurite growth rate of wild-type 
neurons slows upon reaching the GST-Nogo-66-coated 
region (i.e., 0.85 ± 0.07  µm/min outside GST-Nogo-66 
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coated region and 0.51 ± 0.05 µm/min within GST-Nogo-66 
coated region), neurites of hTpm3.1-overexpressing neurons 
appear largely insensitive to the inhibitory substrate, show-
ing no significant change in their growth rate upon entering 
the GST-Nogo-66-coated region. A key property of Tpm3.1 
is its ability to influence actin filament dynamics by regulat-
ing the interaction of other actin-associating proteins with 
the filament. For example, Tpm3.1 regulates actin dynam-
ics, at least in part, by inhibition of ADF/cofilin as shown 
in Bryce et al. (2003) and Robaszkiewicz et al. (2016). 
This inhibition is likely through the regulation of signalling 
cues, upstream of ADF/cofilin, since reconstituting the actin 
polymerization machinery containing actin, cofilin and tro-
pomyosin in vitro does not show a direct inhibition of cofilin 
activity (Bonello et al. 2016; Janco et al. 2016). ADF/cofilin 
is suggested to be an integral contributor to actin turnover, 
regulating neurite extension (Endo et al. 2003; Meberg and 
Bamburg 2000). By preventing ADF/cofilin from severing 
actin filaments, increased stabilisation of the actin filament 
population could lead to reduced growth cone advance and 
a reduced rate of neurite outgrowth, which we see in our 
assay system (Fig. 3b).

We then determined the proportion of wild-type and 
hTpm3.1-overexpressing neurons that extend their neurites 
into the GST-Nogo-66-coated region. We found a significant 
difference in the ability of wt and hTpm3.1 overexpressing 
neurons to overcome the GST-Nogo-66 substrate (Fig. 3c). 

Compared to wt neurons, neurons overexpressing hTpm3.1 
show a much greater propensity to extend into and past the 
GST-Nogo-66-coated region (Fig. 3c). This is indicated by 
a 1.7- and 3.9-fold increase in the number of neurites tips 
located in (regions − 1 and 1) and past (regions 2 and 3) the 
GST-Nogo-66-coated area, respectively. No differences in 
neurite outgrowth were observed between the two groups 
in the absence of GST-Nogo-66 (Fig. 3c).

We have previously shown that Tpm3.1 regulates neurite 
outgrowth in neurons in an isoform-specific manner, which 
are not exposed to extracellular guidance cues (Schevzov 
et al. 2008, 2012; Fath et al. 2010; Curthoys et al. 2014). Our 
findings here suggest that Tpm3.1 may have an important 
function in controlling how neurons respond to external cues 
for neurite outgrowth. NogoA has been shown to mediate 
neurite inhibition by signalling through the RhoA/ROCK 
pathway, leading to the activation of the actin filament sev-
ering protein ADF/cofilin and subsequent depolymeriza-
tion of actin filaments in the growth cones and eventually 
growth cone collapse (Niederost et al. 2002; Hsieh et al. 
2006; Fournier et al. 2003). One may speculate that Tpm3.1 
counteracts the neurite growth-inhibiting effect of Nogo-66 
by inhibiting ADF/cofilin activity, decoupling the extracel-
lular growth-inhibitory signal of NogoA from the depolym-
erization of the actin cytoskeleton in the growth cones.

Nogo-66 has been shown to be an effective inhibitor 
for neurite outgrowth in a wide range of different neuronal 
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Fig. 1  Design of microfluidic device. A Photo of microfluidic device 
for scale (top). Detailed schematic of microfluidic configuration 
with intercalating channels shown in yellow and green (middle) and 
enlarged image of area outlined showing device properties (bottom). 
Scale bars = 1 mm (middle) and 200 µm (bottom). b Schematic show-
ing device being placed into live cell imaging dish B[1], loading of 
GST-Nogo-66 substrate (green) into channels on the right (B[2]), 
seeding of hippocampal cells into channels on the left (red) and 
cortical cells into a support ring (orange)(B[3]) and removal of the 

microfluidic device once cells are attached (B[4]). c Immunofluores-
cence image, displaying experimental loading of devices with GST-
Nogo-66 inhibitory substrate coating on the right (green) and primary 
hippocampal cells on the left (orange). Scale bar = 1.5 mm. d Bright-
field image of microfluidic device (white outline) with a schematic 
overlay showing channel dimensions and distances between interca-
lating channels. The schematic demonstrates how the lengths of neur-
ites were measured
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Fig. 2  Validation of GST-
Nogo-66 coating (a–c), cell 
viability (d–l) and optimiza-
tion of neurite outgrowth 
assay (m–s). a, b Fluorescence 
images of GST-Nogo-66 coat-
ing in channel pattern defined 
by microfluidic device at 1 day 
in vitro (DIV) and 7 DIV, scale 
bars = 150 µm. c Quantifica-
tion of fluorescence intensity 
of GST-Nogo-66. Graph shows 
mean ± SEM. Unpaired t test. 
n = 20. d–k Fluorescence 
images of hippocampal neurons 
at 3 DIV, plated with (d, e, 
f, g) or without (h, i, j, k) a 
cortical support ring. Scale 
bars = 100 µm. l Quantifica-
tion of cortical support ring 
experiments at 3 and 7 DIV. 
Graph depicts the mean percent-
age of alive cells per region 
of interest ± SEM. Unpaired t 
tests. n = 10–11. P value ****P 
<0.0001. m–r Immunofluores-
cence images of neurite out-
growth from 2 DIV to 7 DIV. s 
Quantification of neurite lengths 
from time points in (m–r). 
Graph shows mean ± SEM. The 
distance between intercalating 
channels (175 µm) is indicated 
by the red line. The time point 
at which neurites reach the 
GST-Nogo-66-coated substrate 
is depicted by the black, dashed 
line. n = 23 (2 DIV), 120 (3 
DIV), 119 (4 DIV), 125 (5 
DIV), 95 (6 DIV), 43 (7 DIV). 
Scale bars = 200 µm
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populations, including chicken dorsal root ganglion neurons, 
chicken retinal neurons, mouse cerebellar granule neurons, 
human cortical neurons and mouse cortical neurons (An 
et al. 2016; Fournier et al. 2001). Our data, using Nogo-66 
as an inhibitor in in vitro assays, show neurite inhibition 
in both cortical (An et al. 2016) and hippocampal neurons 
(data from the current study). Detailed studies on the expres-
sion profile of the Nogo receptor NgR1 and its co-receptors 
Lingo-1 and  p75NTR show a wide distribution of expression 
in the brain (Barrette et al. 2007; Funahashi et al. 2008). A 
function of increased expression levels of Tpm3.1 in coun-
teracting Nogo66-induced neurite growth inhibition at the 
level of ADF/cofilin activity would likely lead to a growth-
promoting effect in different populations of central nervous 
system (CNS) neurons. Previous studies from ours and other 
groups have shown that the regulation of ADF/cofilin activ-
ity by Tpm3.1 is isoform specific. While both Tpm3.1 and 
the Tpm4 gene product Tpm4.2 inhibit ADF/cofilin activ-
ity, the Tpm1 gene product Tpm1.12 recruits ADF/cofilin to 
actin filaments and allows severing of the filaments. Tpm3.1, 
Tpm4.2 and Tpm1.12 are expressed in developing neurons 
[for a detailed review, see (Schevzov et al. 2012)]. Therefore, 
future studies will be required to test the effects of other Tpm 
isoforms on neurons, extending their process into a growth-
inhibitory environment.

The new microfluidic device, used in this study, allows 
for pharmacological and genetic dissection of the precise 
mechanisms by which Tpm3.1 overexpression overcomes 
the inhibitory effect of NogoA on neurite outgrowth in dif-
ferent neuronal populations of CNS neurons. Whether this 
growth-promoting property of Tpm3.1 is isoform specific, 
or whether other Tpm isoforms have a similar or oppos-
ing effect, remains to be established in future studies. In 

conclusion, our data provide compelling new evidence 
that modulating the expression levels of a key regulator of 
actin filament dynamics in hippocampal neurons is suffi-
cient to overcome the effect of a potent inhibitor of neurite 
outgrowth in the mammalian CNS. Thereby, our findings 
may lead to new strategies to promote neurite outgrowth 
in inhibitory environments and promoting nervous system 
regeneration.
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Fig. 3  Neurite outgrowth promoting activity of Tpm3.1 in the pres-
ence of GST-Nogo-66. a Phase contrast image of hippocampal neu-
rons at the completion of live recording. Grid overlay shows the divi-
sion of cell culture area into regions of interest based on distance 
from GST-Nogo-66 substrate (pseudo-coloured green). Insert shows 
magnified region containing hTpm3.1 overexpressing and wt neurites 
circled in green and red, respectively. Scale bar = 50  µm. b Quanti-
fication of neurite growth rate within GST-Nogo-66-coated areas 

and non-coated areas. Tukey’s multiple comparisons test. Shown are 
mean ± SEM. n ≥ 12. P value *P = 0.016, **P < 0.01. c Quantifica-
tion of the proportion of neurite tips within region − 1/1 and region 
2/3 in the presence (+Nogo66) or absence (−Nogo66) of GST-
Nogo-66. The graph depicts mean of proportions of total number of 
cells ± SEM. Bonferroni’s multiple comparison test. n = 20. P value 
*P = 0.0475, ***P = 0.0003, ****P < 0.0001
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