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Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have

begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect

variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heteroge-

neity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-

based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well

as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as

improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment.

Tumor Heterogeneity and Evolution
The tumor microenvironment is a complex heterogeneous sys-
tem and consists of intricate interactions between the tumor cells

and its neighboring non-cancerous stromal cells. The principal
stromal cells in the tumor niche consist of endothelial cells, mac-
rophages, immune cells, fibroblasts and stem cells. Each cell has
unique behaviors due to variation in genetic and environmental
factors, which has implications in pathogenic conditions.1 In
cancer, nonrecurring mutations and large genomic alterations
generate vast heterogeneity, giving rise to tumors which com-
prised subpopulations of distinct cells. Other factors, including
clonal evolution and positive selective pressure from therapeu-
tics,2 also play a role in inducing tumor heterogeneity.

Unlike prior literatures on cancer heterogeneity,3,4 this
review aims to evaluate and combine the issues of cancer het-
erogeneity with single-cell analysis (SCA),5 summarizing the
recent advances in single-cell cancer analysis which has
allowed new understanding of cancer biology. These single-
cell analytical techniques are classified into four different cat-
egories, including cell-based, nucleic acid-based, protein-
based and metabolite-based methods and are explicitly dis-
cussed along with the advantages and limitations for each
technology. Finally, the review highlighted the importance of
SCA techniques over bulk tissue analyses, and summarized
the application of next generation omics to single cells. The
objective of this review is to familiarize the reader with the
burgeoning field of SCA in oncology, thereby empowering
them to select the best approach for their specific application.

Different characteristics of single cells

Cells work as single units or in organized tissues and organs.
Despite the apparent synchrony in cellular systems, each cell
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can behave uniquely owing to their genetic and environmental
factors, such as proximity to other cells and presence of
extracellular signals. In pathological situations such as cancer,
genetic mutation can give rise to vast heterogeneity of cells.
Cell heterogeneity occurs even in newly divided cells,6 so
pooled sample analysis may mask certain unique characteris-
tics that serve as determining traits for various cell types.

Cancer exhibits significant heterogeneity in terms of mor-
phology, immunophenotype and genotype.7 Although signifi-
cant therapeutic advances have been made in the last decades,
advanced metastatic cancers remain incurable as illustrated by
targeted therapeutics in the treatment of BRAF mutant cutane-
ous melanoma8 and ALK rearranged NSCLC.9 Tumor hetero-
geneity and the emergence of resistant subclones are
contributing factors to the lack of an efficient cancer therapeu-
tic strategy.10 Thus, current routine diagnostic methods for
evaluating tumors, which employ bulk sequencing, such as
biopsies, limit our ability to detect, predict and treat cancer.

Intertumoral and intratumoral variation

Cancer is often an “over-generalized” disease, and in fact dis-
plays vast intertumoral and intratumoral variation.11 Tumors
comprise subpopulations of distinct cells either within a pri-
mary tumor (intratumor heterogeneity), or between tumors
of different tissues, including variations of the same tumor
type within individuals (intertumor heterogeneity).12

Tumor heterogeneity presents a great range of clinical
challenges. Different tissues and cell types have distinct muta-
tional frequencies of oncogenes and tumor suppressors, and
these can result in diverse signaling pathways depending on
tissue context or microenvironment. For example, APC gene
mutations were found to be more prevalent in colorectal can-
cer (CRC), probably due to the heightened role of WNT-
signaling pathways in intestinal development.13 This proteo-
mic heterogeneity also contributes to variation in their
response and resistance to a specific therapy.14 At this point
of time, the majority of existing molecular subtyping methods
do not distinguish cancer cells from normal stroma tissue.

Both intertumoral and intratumoral variation have been
well established in many forms of cancer, such as glioblas-
toma,15 nonsmall-cell lung cancer (NSCLC),16 renal cancer,17

breast cancer,18 prostate cancer19 and ovarian cancer.20 Clini-
cally, intertumor variation is best handled by classifying
tumors into subgroups typically based on morphology, muta-
tions, copy number aberrations (CNAs) and gene expression
profiles. Genomic profiles of multiple cancers showed that
majority of cancer types clustered together under several sub-
types, with exception of some distinct cancers, namely, lung
squamous, head and neck, bladder cancers.21 These cancer
types only demonstrate similarities in genomic signatures in
their TP53 genomic signatures. The integrative genomic and
proteomic multiplatform analysis of single cancer cells have
laid the foundation for a more comprehensive molecular clas-
sification of tumors. Hence, similar methods of classifying
tumors are very informative for clinical decision making.

The common consensus for defined five breast cancer sub-
types is the following: Luminal A, Luminal B, HER2 positive,
basal-like and normal breast-like.22 Treatment decisions are
often based on clinical assays which sorts accordingly to a
similar classification. However, this list is not conclusive. Sev-
eral new subtypes are constantly being evaluated, such as the
claudin-low subtype, which corresponds to cancer stem
cells.23 Although the five molecular subtypes were relatively
well-defined,24 it is increasingly obvious that tumors classified
within the same subtype may still display varied clinical
behavior.25–27 The lack of better subtype definitions will be
detrimental to the patient, as the efficacy of drug strategy can
only be known after administration. However, this problem
might be overcome in the future by the development of rou-
tine assays, which allow real-time monitoring of response, or
by the unraveling of cancer heterogeneity with SCA
approaches.

Nonrecurring mutations and large genomic alterations are
linked to phenotype-based classification of cancer. Although
SCA can be applied to resolve intertumor heterogeneity, such
a resolution may not be required for classification based on
morphology. However, intratumor heterogeneity is largely
explained by applying SCA to study tumor progression by
clonal evolution.2 Introduction of therapeutics often induces
a positive selective pressure which allow for the persistence
of resistance variants.2 According to the traditional model of
clonal evolution, a selective sweep occurs when a series of
clonal expansions occurs to dominate over the cancerous
growth. Due to clonal evolution, conventional one-off genetic
profiling often underestimates the diversity of the tumor. The
resultant subclonal heterogeneity often generates variation in
drug responses.28

SCA techniques may further serve to unravel phenotypes
resulted from previous selective pressures and are not rele-
vant to the metastatic disease status.29 The distribution of
mutations in subclones30 is usually not revealed in pooled
cell sample analysis. Although genetic heterogeneity may not
eventually translate into phenotypic heterogeneity, specific
mutations may still be impactful, depending on its location
of occurrence. Inaccurate classification of a tumor also often
results in partial clonal eradiation and subsequent relapse.31

Cancer cell plasticity, which generates a range of epithelial-
to-mesenchymal (EMT) phenotypes, is further often attrib-
uted to shifts in epigenetic regulation.32 This phenomenon
could be explored with Array Comparative Genomic Hybrid-
ization (aCGH).33 Insights into the heterogeneity of cancer
with single cell profiling will reveal distinct mutation pat-
terns,34 which could act as targets for future drug design and
development, allowing for better personalized therapeutic
development.

Using SCA to resolve tumor complexity

SCA is an up-and-coming approach for understanding cancer
complexity. This approach is especially important since
tumors comprise a highly diverse composition of cells35 that
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are either cancerous or noncancerous. With new techniques
developed (See Section “Modes of SCA for cancer cells”),
we are now able to characterize rare cancer subpopulations
such as cancer stem cells (CSCs)36 and circulating tumor cells
(CTCs).37 There are also in-vivo techniques to track single-
cells motility within their intrinsic environment.38

SCA method is an ideal fit to resolve intratumor heteroge-
neity, since clonal evolution is of single-cell origin with mul-
tiple hypothesis-based models of evolution. The major
clinical challenge is the fact that single tumor samples,
obtained via needle biopsies, are likely to under represent the
true extent of intratumor heterogeneity. Ideally, it would be
valuable to resolve all the cells in a tumor via SCA
techniques.

Our review focuses on the applications of SCA tools to
resolve cancer heterogeneity, as distinct from recent reviews
on independent topics on SCA5 or cancer heterogeneity.39

Here, we present various SCA techniques (cell-based, nucleic
acid-based, protein-based, metabolite-based and lipid-based),
and diskuss their strengths and limitations. Recent break-
throughs in cancer research via high-throughput sequenc-
ing40 will also be highlighted to provide insights into their
potential for cancer detection, classification, treatment and
prognosis.

Modes of SCA for Cancer Cells
Cell-based analysis

Cellular events in-vivo are very dynamic in nature, and thus
it is challenging to monitor them using end-point popula-
tion-based analysis techniques. Flow cytometry (FCM) is a
high-throughput and multi-dimensional technology which
may overcome the drawbacks associated with end-point-
based studies.41 However, there is still a problem of spectral
overlap and the technique suffers from a loss of spatio-
temporal information due to the lack of imaging.

The issue of multiplexing profiling due to fluorescence-
based spectral overlap is dramatically alleviated by mass
cytometry.42 This technique allows simultaneous measure-
ment of parameters, and was recently shown to provide
insights into the spatial information of breast cancer tissues
and tumor heterogeneity via mass cytometry imaging.43

Besides FCM and mass cytometry, other dynamic methods of
live cell tracking, such as the use of dyes44 or fluorescence
proteins,45 could be utilized to monitor these progressive
events.

SCA techniques are also adopted for observing the effect
of anticancer drugs at the individual cell level. Hydrodynamic
stretching of single cells, also known as deformability cytom-
etry (DC), was used in two opposing microfluidic channels to
detect malignancy in pleural effusion46 (Fig. 1a). This
approach leads to unbiased label-free molecular characteriza-
tion of single cells. Droplet-based cell encapsulation technol-
ogy has emerged as a promising SCA tool for high-
throughput drug screening by encapsulating single-cells in a
droplet with different drugs under various concentrations.47,48

Microscopy techniques such as single-cell image cytometry
and ultrafast spectral imaging49 can also be utilized to obtain
morphological and spatio-temporal information of tumor
cells in response to drugs. Such advances will allow probing
of single particles or cells under high spatial, temporal and
spectral resolution, allowing insights into enzyme kinetics,
membrane protein studies via the precise manipulation and
analysis of single cells.

Nucleic acid-based analysis

Nucleic-acid analysis of single cells is challenging, due to the
detection or quantification of small amount of DNA (�7 pg),
and total RNA (�20 pg). Although there are methods to
amplify nucleic-acids, these methods usually start with low
input materials and are hence replete with stochastic effects.50

It is imperative to evaluate the principles of the amplification
methods to understand how well they represent the original
DNA or mRNA molecules and to avoid undesired biasness.
This might lead to the better development of amplification
technologies with greater accuracy and higher throughput.
More recently, nucleic acid can be amplified by an exponen-
tial (PCR-based) or linear (isothermal-based) format. Intro-
duction of amplification bias during PCR is a well-known
concern. Therefore, sensitive methods, which can detect or
sequence single molecules are highly desired.

Unlike genomics studies, transcriptomic tools help to
acquire quantitative and qualitative information about genetic
expression at a definite time point and under specific physio-
logical conditions. The single-cell PCR based approach
(SINCE-PCR)51 enables the sorting of individual cells via
FACS and also subsequent high-throughput analysis of small
amount of mRNA (Fig. 1b). The main advantage of this tech-
nique is the parallel gene expression analysis of 96 genes
from a single cell and the possibility to study expression
from hundreds of cells of the same sample simultaneously.
Fluidigm Corporation developed a fully automated microflui-
dic system (C1 Single-cell Auto Prep System), which can cap-
ture single cells, followed by reverse transcription of mRNA
and simultaneous detection of multiple genes using
intercalating-dye based qPCR assay.52 Also, the mRNA-Seq
protocol (Smart-Seq) was developed to detect alternative
transcript isoforms and single-nucleotide polymorphisms at a
single-cell level with higher sensitivity and accuracy.53

Protein-based analysis

Proteomics analysis helps us gain understanding on the post-
translational modifications that are crucial in cell signaling
and cell-to-cell heterogeneity. One major bottleneck of the
proteomics field is the minimum amount of protein required
for detection by current technologies; usually many cells (a
single-cell has 1 3 105 molecules of proteins)54 are required
for analysis.

Recent advancement in microfluidic technologies and
mass spectrometric approaches has led to new single-cell pro-
teomics studies that could be performed with greater
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sensitivity and specificity. Combining the advantages of the
microfluidics platform and image cytometry analysis, micro-
fluidic image cytometry (MIC; Fig 1c)55 was developed to
examine high-dimensional data from clinical samples at a
single-cell resolution. This device can selectively lyse single
adherent cells and capture cellular contents to determine
kinase activities.56 Further on, a novel photocleavable DNA
barcode-antibody conjugate approach was introduced to
identify protein biomarkers from single cancer cells. After

binding of antibodies to the target protein, the DNA barco-
des were photo-cleaved in solution and amplified by PCR to
quantify various proteins from individual cells.57 In a later
study, the DNA-barcoded antibody sensing technology was
further improved to analyze the heterogeneous expressions of
�90 proteins from fine-needle aspirate samples obtained
from different patients.58 More recently, a mass cytometry
platform (CyTOF) was developed to highlight the phenotypic
heterogeneity in acute lymphoblastic leukemia (ALL) at

Figure 1. Different modes of SCA. (a) Cell-based analysis - Left: Schematic representation of a microfluidic device with inset showing chan-

nel design for single-cell mechanophenotyping (deformation junction is shown in red in the right FIG.). Right: Cells are injected into the

device and stretched under continuous flow. The deformability and diameter of the cells are quantified to diagnose a cell as benign or

malignant.46 (b) Nucleic acid-based analysis - Working principle of SINCE-PCR. This method combines the single cell sorting capacity of

FACS with the microfluidic PCR technology to perform high-throughput transcriptional analysis from limited amount of mRNA. (c) Protein-

based analysis – Left: Diagrammatic representation of MIC technology that comprises two parts: (i) the microfluidic cell array chip and (ii)

Fluorescence microscopy based image acquisition and cytometry. Four intracellular signaling proteins were immunologically labeled. Anti-

EGFR: purple, anti-PTEN: orange, anti-pAKT: red and anti-pS6: green. Right: MIC platform provides complex data sets for multiparameter

expression/phosphorylation of single cells (above). Representation of MIC parameters to qualitatively assess signal transduction mecha-

nisms (below).55 (d) Metabolite-based analysis - Laser- NIMS for direct mass analysis of a single cell at higher resolution and sensitivity.

Left: Fluorescence microscopy image of DAPI (blue) and anti-cytokeratin (red) labeled cell. Right: Image of the cell at higher resolution

(Scale bar 28 lm).62 [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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single-cell resolution. In this work, the authors reported
viSNE, a tool to map high-dimensional cytometry data onto
two dimensions, and validated the functionality of this tool
using 29 marker panel specific for ALL.59

Lipid and metabolite-based analysis

Single-cell lipidomics is still at its infancy stage of develop-
ment. The time-of-flight secondary-ion mass spectrometry
(TOF-SIMS) approach has been implemented to visualize lip-
ids in individual breast cancer cells.60 Prominent expression
of stearoyl-CoA desaturase 1 in breast cancer SKBR-3 cell
lines was reported, and static TOF-SIMS was concluded to be
an effective method for determining the lipid molecular sig-
nature of the plasma membrane of individual breast cancer
cells. Further applications in lipid detection of single cells are
still being optimized.61

Single cancer cell metabolomics might be exploited to
detect tumor cells that develop resistance against various che-
motherapeutic agents. The nanostructure-initiator mass spec-
trometry (NIMS) was introduced for direct mass analysis of a
single-cell at higher resolution and sensitivity (Fig. 1d). Using
this device, desorbtion/ionization of endogenous phospholi-
pids can be achieved from a single breast cancer cell with
greater complexity as compared with that obtained from
many cells by the conventional methods such as nanoESI,
ion-NIMS and MALDI62 or be used to monitor the response
of individual tumor cells and xenografts to anticancer
agents.63

Insights on Tumor Heterogeneity Obtained with
SCA Techniques
Cancer cell profiling

The mutation distribution of cancer cells varies due to clonal
evolution. Longitudinal SCA of cancer cells will serve to
delineate the expansion, diversification and selective process.
For example using nucleic-based approaches, mutation rates
in breast cancer cells were modeled and it was found that
clinically aggressive triple-negative breast cancer cells showed
mutation rates at around 13 times greater than other sub-
types of cancer cells.64 aCGH could also analyze CNAs and
massive parallel sequencing in CTCs enriched from CRC
patients,65 revealing distinct CRC-related CNAs in both the
primary tumor and CTCs. Using Whole Genome Amplifica-
tion (WGA) of the single CTCs, substantial inter and intra-
patient heterogeneity in the expression of EGFR and genomic
modifications in EGFR, KRAS and PIK3CA were
observed.65,66 Their data could explain the variation in the
response of EGFR inhibitors in CRC patients. aCGH could
also be applied on the studies of epigenetic status changes
with cancer progression.33

It is well-known that cancer cells typically exhibit aberrant
DNA methylation patterns that can drive malignant transfor-
mation.67 Since single-cell epigenetic heterogeneity was
recently highlighted in embryos,68 we can expect similar
studies to be performed for single cancer cells, potentially

providing unique insights to cell-of-origin- specific epigenetic
factors.

In another study using mRNA-Seq protocol (Smart-Seq),
the expression profile of 84 epithelial-mesenchymal transition
(EMT)-related genes was determined in rare prostate cancer
cell subpopulations using single-cell microfluidics-based
quantitative polymerase chain reaction (q-PCR).69 Samples
obtained from patients with castration-resistant cancer dem-
onstrated an increased expression of a subgroup of EMT-
associated genes (for example, PTPRN2, ALDH1, ESR2 and
WNT5A) that could facilitate monitoring of disease. More
recently, analysis of prostate CTCs with single cell RNA-seq
also revealed heterogeneity in Wnt signaling pathways.70

Another work also described analysis of the transcriptome
from 430 single cells isolated from brain glioblastomas.71

Their work highlighted that heterogeneity in tumor cells may
reflect neural development. Similar SCA analyses on breast
cancer cell lines reveal specific transcriptional programs,
which were triggered as a stress response to drug treatment.72

In another study, 100 cells derived from a polygenomic
tumor were examined with high throughput sequencing,40

and three subpopulations, which demonstrate sequential clo-
nal expansion were successfully identified. They analyzed the
monogenomic tumor and its liver metastasis and observed
that a particular clonal expansion was responsible for both
cases. Analysis of the polygenomic secondary tumors clearly
distinguished them from its monogenomic primary tumor,
and they found subpopulations of nonmetastatic
“pseudodiploid” cells in monogenomic primary tumors, sug-
gesting presence of persistent intermediate cell types. Intertu-
mor heterogeneity of tumors with similar morphology was
also demonstrated with proteomic screening of single nuclei,
which may potentially improve follow-up on treatment effi-
cacy.11 Traces of inter-73 and intra-tumor heterogeneity74 of
KRAS, BRAF and PIK3CA expression were reported. These
variations may be causative for the failure of existing EGFR
antibody therapy in patients with CRC,75 as the actual sub-
type may evade detection or be characterized wrongly as a
different tumor subtype.

Besides distinguishing between cancer subtypes, SCA may
be useful for investigating the non-cancer cells in tumors.
The presence and concentration of tumor-infiltrating
immune cells are gaining interest as they have been suggested
to correlate with cancer relapse and treatment outcomes.76

Single-cell techniques will enable closer scrutiny for the
diversity and role of such immune cells.77

Variation in signaling mechanisms

Cancer cell exhibits differential responses to stimulation, such
as acute myeloid leukemia blast cells (with or without certain
Flt3 mutations) in response to granulocyte colony-stimulating
factor (G-CSF) activation.78 Insights on tumor cell responses
demonstrate the ability of cancer cells to undergo dramatic
remodeling with disease progression.
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Intracellular signaling proteins from single-cells can be
detected with single-cell barcode chips (SCBCs),79 enabling
characterization of downstream signaling pathways. In another
work, heterogeneity in the Akt kinase activity in single hepato-
cellular carcinoma cells was detected in response to insulin stim-
ulation, using MIC.55 Recently, single melanoma cells were
isolated using the C1 System (from Fluidigm Corporation) and
pluripotency factor POUF51 (OCT4) gene expression was iden-
tified to correlate with the tumorigenic potential of single cells.52

Other breakthroughs with SCA include the simultaneous
observation of Src kinase and membrane type 1 matrix met-
alloproteinase (MT1-MMP) activities in response to epithelial
growth factor (EGF) stimulation. Using fluorescence Reso-
nance Energy Transfer (FRET), it was observed that although
Src and MT1-MMP were part of the same signaling pathway,
they were activated in different manners after EGF stimula-
tion, due to the formation of dissimilar intermediates at dif-
ferent subcellular sites.80 PI3Ki treatment response had also
been monitored in cancer patients using various single-cell
proteomic chip analysis, all of which revealed vast differences
in protein-protein interactions.79

Identification of rare cancer cell populations

The diverse cancer cell sub-populations result in a substantial
roadblock of detecting and distinguishing minority pheno-
types, especially rare cell populations. High sensitivity techni-
ques, such as pyrosequencing81 and single-nucleus
sequencing,11 may enable the detection of unique and rare
cancer-associated sequence variations, using as little as picoli-
ter amounts of samples.

Perhaps the most intriguing application of SCA is on the
characterization of rare cancer cell populations, such as CSCs

and CTCs. CSCs are rare cancer cells with tumorigenic prop-
erties which are detected in tumors or at a low frequency
among isolated CTCs.82,83 The detection and sorting of rare
CSCs subpopulation is of utmost importance in driving indi-
vidualized cancer treatment. These cells are associated with
tumor-initiating activity and may be resistant to certain anti-
cancer therapeutics.84 However, CTCs are cancer cells, which
originate from tumors and invade the peripheral circulation
to potentially form metastasis.85 They may pave the way for
early detection, diagnosis and monitoring of cancer treat-
ment to various therapeutic agents. CTC isolation using bio-
chemical marker (immunomagnetic, aptamer-mediated) or
physical (size, deformability, electrical and magnetic)86 prop-
erties were often utilized as a pre-enrichment step. In spite
of the recent technological advancements in the isolation and
characterization of CTCs, the clinical implementation of
CTCs for routine diagnostic purpose of cancer has not been
widely undergone due to several reasons, such as higher intra
and inter-laboratory diskrepancies, different reagents and
staining protocols used for evaluating these rare cells from
peripheral blood.

Despite the challenges, transcriptional profiling of CTCs
has since been made possible, revealing extreme differences
in gene expression (Ensemble Decision Aliquot Ranking
(eDAR); Table 1; Fig. 2a).87 Using census-based sequencing
technique, an integrative approach to separate, retrieve and
sequence the whole exomes of the clinical CTCs derived
from prostate cancer patients was introduced (Fig. 2b). A
large proportion of the standard exome in CTCs was mapped
(>99.995%) and 70% of the CTC mutations in the matched
tissue were identified.88 These profiles were also found to be
significantly different from cell lines, which supports previous

Figure 2. SCA for CTCs. (a) Schematic of working principle of the ensemble decision aliquot ranking device. The blood sample is broken

down into nanoliter aliquots that were ranked according to the presence or absence of CTCs. The sorting of the aliquots with CTCs (indi-

cated in yellow) is triggered with a laser-induced fluorescence and the cells are collected in the cell capture chamber. Fluorescent antibody

labeled image of a captured breast cancer stem cell (CD441/CD242). Scale bar 20 lm. [Reprinted by permission from John Wiley and

Sons]87 (b) Schematic representation of an integrative approach to separate, retrieve and sequence the whole exomes of the clinical CTCs.

The Illumina MagSweeper was used to retrieve the EpCAM expressing CTCs from clinical samples. The purification of the CTCs is followed

by whole genomic amplification and census-based sequencing of the whole exome. [Reprinted by permission from Macmillan Publishers

Ltd: Nature Biotechnology, 2014]88 [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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work indicating that cell lines are not accurate representa-
tions of cancer in-vivo.89

Overall, CTCs were also found to be extremely varied in
terms of biomarker expression, morphology and cell size.90,91

They may also vary significantly from cells obtained from
tumors of the same patient. In recent years, single-cell metab-
olomics92 has also been suggested as a potential method to
detect and enrich CTCs. Investigations are currently ongoing
to better characterize the rare cancer cells, and their efforts
may eventually reveal subpopulations with tumorigenic abil-
ities or which play a substantial role in cancer recurrence.

Limitations

Data mined from SCA usually have to be carefully studied with
rigorous computation, which is imperative to distinguish pre-
existing genetic alterations from amplification errors. Single cell
studies also require multiple independent samples to detect reli-
able somatic changes. Improper computation may incur biasness
and errors in data interpretation, especially in highly heterogene-
ous samples, such as CTCs.86 In certain forms of cancer (e.g.,
breast cancer), cells demonstrate extremely low prevalence of
point mutations, as described in the full listing on the COSMIC
database (http://cancer.sanger.ac.uk/cancergenome/projects/cos-
mic/). This has also been observed in many rare CTC samples
(e.g., PIK3CA (breast cancer, 3 out of 17 patients)93 and p53
(breast cancer, 2 out of 6 single CTCs).94 In fact, most literature
describes cultured CTCs as cells with heterogeneity in mutation
prevalence,95 and usually demonstrates high diskordance
between CTCs and the primary tumor and metastases.96 Inde-
pendent analysis from multiple single cells will be pivotal in dis-
tinguishing noise from low prevalence signals.

Since it is technically impossible to eradicate sampling
noise97 in SCA techniques due to the low amount of sample
material, additional steps may be required to distinguish
noise from low prevalence signals. These may be carried out
with molecular fluorescence in situ hybridization (FISH)98 or
unique molecular identifiers.99 Noise structure from single
cell sequencing can also be determined to differentiate sam-
pling noise from biological signals.100 Independent analysis
from multiple single cells may also serve to reveal repeated
and specific mutational patterns, which will be pivotal in dis-
tinguishing technical noise from biological signals.

Current Application and Future Perspectives
SCA demonstrates heightened sensitivity over bulk

sample analyses

SCA holds a major advantage over the analysis of rare cells
in the absence of a pure sample cohort, since pooled samples
may either mask important signals (Fig. 3) or generate false
data due to the presence of contaminating components.
These signals may be representative of various specialized cell
types, or induced from stochastic changes,101 which in turn
may be amplified by downstream pathways to generate asym-
metries that determine cell fate and play a crucial role in var-
ious developmental or pathological processes.102
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Current methods of evaluating cancer and their response
to therapy remain restricted by analysis of bulk tissue and
the feasibility of tumor biopsies in the clinical settings.103 Sin-
gle CTCs may be alternatively isolated from patients via a
relatively non-invasive mode of liquid biopsy (blood with-
drawal), and may serve to illuminate our understanding of
mechanisms regulating metastasis. For example, recent work
involving single CTC analysis suggests that multiple pathways
in metastatic cascade.104 However, these cells are rare and
comprise CTC subpopulations, such as EpCAM6,
Vimentin6 and E-cadherin6 populations.83 These subpopu-
lations are generated in part due to EMT.105 Other special-
ized CTC sub populations include CSCs (e.g., CD133 and
CD166 cells for lung CSCs; Fig. 4a). These subpopulations
may also vary after culture in vitro.95,106 Sequencing and
FISH90 of single CTCs will highlight their genetic and proteo-
mic variation in comparison to cell lines, and the studies can
be further extended to investigate the differences among indi-
vidual CTCs (Figs. 4b and 4c). Evolving techniques of SCA
could overcome limitations imposed by low sample sizes,
thus presenting an unprecedented opportunity to investigate
and characterize CTCs, which could eventually translate into
utility for clinical or biological aspects.

Application of next generation omics to single cells

There are probably two steps required to unravel the extent
of cancer heterogeneity. First, is to involve the extensive use
of next generation omics, such as single-molecule sequencing,
which are able to reveal greater heterogeneity in cancer.
Other extensive transcriptomic, methylomic and metabolomic

data can be similarly obtained with various SCA techniques
using multistage or meta-dimensional analyses.107 The next
step would involve computational integration of large scale
databases, sometimes referred to as “big data.”110 There are
currently existing databases to map cancer-associated pheno-
types, such as the global International Cancer Genome Con-
sortium,111 but the use of SCA will fine-tune the search to
reveal a greater extent of heterogeneity.

SCA techniques are constantly improving and evolving.
One promising method with a potential to make an impact
on single-cell biology is single molecule sequencing.

The first single-molecule sequencing was commercialized
by Helicos Biosciences. In this approach, strands were teth-
ered to a flow cell surface and sequencing was achieved by
synthesis approach. Another single-molecule sequencing
method, termed as single molecule real-time sequencing
(SMRT) (Pacific Biosciences) can generate long reads (10–
15Kb) and holds great potential as a long read platform,
which can accurately uncover transcripts present. These plat-
forms are known as third generation platforms (First genera-
tion: Sanger; Second generation: Massive parallel sequencing
platforms). In the last 5 years, there has been huge interest in
nanopore-based sequencing (Fourth generation).112

Both biological and solid state nanopores are being
explored for nanopore-based sequencing. Oxford Nanopore
released MinION,111 a disposable DNA sequencing device
with a footprint of a USB memory stick. Recent data indicate
that the MinION is capable of average read length of 5.4kb
with current upper limit at 10 Kb. The third and fourth-
generation sequencing platforms have yet to stabilize with an

Figure 3. Schematic diagram to illustrate differences in signal detection with pooled and SCA. (a) Heterogeneous samples, such as cancer

tumors, consist of vast cell subpopulations. When pooled samples of tumor biopsies are analyzed, rare subpopulations (in black) may not

be present in the specimen tested or may contribute insufficient material for analysis, leading to false negatives. SCA with appropriate tech-

nology will enable individual and specific detection of signals without requiring further data interpretation to sort out various signals. Rare

cells can be easily detected without requiring further enrichment procedures. (b) Stochastic nature of transcription in cells. In the absence

of intrinsic noise, gene expression from all cells will be theoretically uniform (top). However, stochastic effects in gene expression generate

huge degrees of cell–cell variation (bottom), creating differential gradients in gene expressions. These differences can be illustrated by the

varied expression of cfp103 and rfp (red) genes in wild-type E. coli (insert).118 [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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acceptable performance, except for SMRT. One key issue
with single molecule sequencing is the high error rates, which
require dramatic improvement in the system as a whole unit,
including chemistry, instruments and nanopores or zero-
mode waveguide. The application of single molecule sequenc-
ing on single cells is far from reality as these systems still
start with high amounts of nucleic acids (mg). Another area,
which needs attention is development of an interface to cap-
ture single cells and perform single molecule sequencing.

Concluding Remarks
Cancer is a heterogeneous disease, which demonstrates varia-
tion in terms of morphology, immuno-phenotype and geno-
type. Analysis of conventional one-off genetic profiling on
bulk biopsy tissues are often employed as the current stand-
ard for evaluating tumors, limiting diagnostic and treatment
efforts as mutations in subclones may be lost in the analysis
or false data may be generated due to contaminating compo-
nents. The profiling of bulk samples may also unravel pheno-
types resulted from previous selective pressures and are not
relevant to the current metastatic disease status. Inaccurate

classification of a tumor often results in partial clonal eradia-
tion and subsequent relapse.

Single cell profiling provides a means to reveal mutation
patterns and allow for better therapeutic development. Effi-
cacy of anti-cancer drugs can be investigated at the single cell
level. The rise of combinational investigative platforms, such
as MIC, could also generate high-dimensional data from clin-
ical samples at a single-cell resolution. Single cancer cell
metabolomics could also be exploited to examine tumor
resistance development against chemotherapeutic agents.
Array Comparative Genomic Hybridization (aCGH) has
revealed distinct CRC-related CNAs in primary tumor and
CTCs, as well as epigenetic status modifications with cancer
progression. These efforts will pave the path for demonstrat-
ing the mechanisms involved in contributing to a varied
response of various therapeutic strategies. Other applications
include the characterization of rare cancer cell populations
(e.g., CSCs), which were also demonstrated to have specific
drug resistant or tolerant properties. Besides distinguishing
between cancer subtypes, SCA may be useful for investigating
the non-cancer cells located within the tumor niche.

Figure 4. SCA revealing CTC heterogeneity. Single CTCs display vast heterogeneity in terms of morphology, biomarker expression and

genetic composition. (a) Immunofluorescence staining with cancer stem cell biomarker (CD133), as well as EMT biomarkers such as

E-cadherin and Vimentin.105 (b) Heat map displaying subset data obtained from sequencing of single CTCs and the relevant comparison

with cell lines.91 (c) Fluorescence in situ hybridization90 of enriched ALK gene rearrangements in single CTCs and CTC clusters.119 [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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There are currently no SCA methods or devices that have
received FDA approval and are currently employed for clini-
cal decisions. However, notable advancement in the field for
low amounts of CTC capture and analysis has been achieved
through the development of FDA (Food and Drug Adminis-
tration)–approved method, via the CellSearch system (Veri-
dex).112 This system consists of a semi-automated device for
specifically capturing CTCs using ferrofluids loaded with
anti-EpCAM antibodies and subsequently staining and identi-
fying these cells with a cocktail of antibodies targeting the
various epithelial cytokeratins. The CellSearch system has
been utilized for CTC detection in clinical settings and it was
observed that CTC evaluation could provide significant prog-
nostic information (progression-free survival and overall sur-
vival) about patients with metastatic breast cancers.113,114

To further enhance single-cell analytics, novel methods
and bioinformatics algorithms need to be established for
improved throughput, lower cost, convenient handling and
ease of use. Upcoming technologies, such as SCBC and
SMART-seq, are evolving rapidly and may eventually reveal

high resolution cellular diversity that was previously unchar-
acterized. Improving sequencing procedures will enable
deeper scrutiny of RNA expression in individual cells, reveal-
ing heterogeneity in mRNA content and splice site usage
beyond estimations previously obtained with pooled sample
analysis.

Rapid improvements in single-cell quantification techni-
ques have enabled detailed mapping of individual cell proteo-
mic expressions and signaling network activity. These are
aided by the emergence of super-resolution imaging techni-
ques115 and computational approaches,116 which facilitates
the use of such SCA techniques. Novel imaging approaches
and programming methods enable detection of single signals
and reduce protocol time frame by generating information
from massive amounts of data. Enhanced methods for bio-
marker detection, such as isotopic labeling,117 are also contin-
uously improvised to better identify and catalog the new sub
populations revealed. These advancements will no doubt
enhance the applicability of SCA, making it more accessible,
scalable and feasible for clinical use.
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